136 resultados para straw residues


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diaminopropionate ammonialyase (DAPAL), a fold-typeII pyridoxal 5-phosphate-dependent enzyme, catalyzes the ,-elimination of diaminopropionate (DAP) to pyruvate and ammonia. DAPAL was able to utilize both d- and l-DAP as substrates with almost equal efficiency. Mutational analysis of functionally important residues such as Thr385, Asp125 and Asp194 was carried out to understand the mechanism by which the isomers are hydrolyzed. Further, the putative residues involved in the formation of disulfide bond Cys271 and Cys299 were also mutated. T385S, T385D sDAPAL were as active with dl-DAP as substrate as sDAPAL, whereas the later exhibited a threefold increase in catalytic efficiency with d-Ser as substrate. Further analysis of these mutants suggested that DAPAL might follow an anti-E-2 mechanism of catalysis that does not involve the formation of a quinonoid intermediate. Of the two mutants of Asp125, D125E showed complete loss of activity with d-DAP as substrate, whereas the reaction with l-DAP was not affected significantly, demonstrating that Asp125 was essential for abstraction of protons from the d-isomer. By contrast, mutational analysis of Asp194 showed that the residue may not be directly involved in proton abstraction from l-DAP. sDAPAL does not form a disulfide bond in solution, although the position of Cys299 and Cys271 in the modeled structure of sDAPAL favored the formation of a disulfide bond. Further, unlike eDAPAL, sDAPAL could be activated by monovalent cations. Mutation of the cysteine residues showed that Cys271 may be involved in coordinating the monovalent cation, as observed in the case of other fold-typeII enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenylosuccinate lyase (ASL), an enzyme involved in purine biosynthesis, has been recognized as a drug target against microbial infections. In the present study, ASL from Mycobacteriumsmegmatis (MsASL) and Mycobacteriumtuberculosis (MtbASL) were cloned, purified and crystallized. The X-ray crystal structure of MsASL was determined at a resolution of 2.16 angstrom. It is the first report of an apo-ASL structure with a partially ordered active site C3 loop. Diffracting crystals of MtbASL could not be obtained and a model for its structure was derived using MsASL as a template. These structures suggest that His149 and either Lys285 or Ser279 of MsASL are the residues most likely to function as the catalytic acid and base, respectively. Most of the active site residues were found to be conserved, with the exception of Ser148 and Gly319 of MsASL. Ser148 is structurally equivalent to a threonine in most other ASLs. Gly319 is replaced by an arginine residue in most ASLs. The two enzymes were catalytically much less active compared to ASLs from other organisms. Arg319Gly substitution and reduced flexibility of the C3 loop might account for the low catalytic activity of mycobacterial ASLs. The low activity is consistent with the slow growth rate of Mycobacteria and their high GC containing genomes, as well as their dependence on other salvage pathways for the supply of purine nucleotides. Structured digital abstract andby()

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unconstrained gamma(4) amino acid residues derived by homologation of proteinogenic amino acids facilitate helical folding in hybrid (alpha gamma)(n) sequences. The C-12 helical conformation for the decapeptide, Boc-Leu-gamma(4)(R)Val](5)-OMe, is established in crystals by X-ray diffraction. A regular C-12 helix is demonstrated by NMR studies of the 18 residue peptide, Boc-Leu-gamma(4)(AR)Val](9)-OMe, and a designed 16 residue (alpha gamma)(n) peptide, incorporating variable side chains. Unconstrained (alpha gamma)(n) peptides show an unexpectedly high propensity for helical folding in long polypeptide sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide based self assembled nanostructures have attracted growing interest in recent years due to their numerous potential applications particularly in biomedical sciences. Di-peptide Phe-Phe was shown previously to self-assemble into nanotube like structures. In this work, we studied the affect of peptide backbone length and conformational flexibility on the self assembly process by using two dipeptides based on the Phe-Phe backbone (beta Phe-Phe and beta Phe-Delta Phe): one containing a flexible beta Phe amino acid, and the other containing both a flexible bPhe as well as a backbone constraining Alpha Phe (alpha,beta-dehydrophenylalanine) amino acid. Electron microscopy and X-ray diffraction experiments revealed that these new di-peptides can self-assemble into nanotubes having different properties than the native Phe-Phe nanotubes. These nanotubes were stable over a broad range of temperatures and the introduction of non-natural amino acids provided them with stability against the action of nonspecific proteases. Moreover, these dipeptides showed no cytotoxicity towards HeLa and L929 cells, and were able to encapsulate small drug molecules. We further showed that anticancerous drug mitoxantrone was more efficient in killing HeLa and B6F10 cells when entrapped in nanotubes as compared to free mitoxantrone. Therefore, these beta-phenylalanine and alpha, beta-dehydrophenylalanine containing dipeptide nanotubes may be useful in the development of biocompatible and proteolytically stable drug delivery vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High conservation of glycyl residues in homologous proteins is fairly frequent. It is commonly understood that glycine tends to be highly conserved either because of its unique Ramachandran angles or to avoid steric clash that would arise with a larger side chain. Using a database of aligned 3D structures of homologous proteins we identified conserved Gly in 288 alignment positions from 85 families. Ninety-six of these alignment positions correspond to conserved Gly residue with (phi, ) values allowed for non-glycyl residues. Reasons for this observation were investigated by in-silico mutation of these glycyl residues to Ala. We found in 94% of the cases a short contact exists between the C atom of the introduced Ala with the atoms which are often distant in the primary structure. This suggests the lack of space even for a short side chain thereby explaining high conservation of glycyl residues even when they adopt (phi, ) values allowed for Ala. In 189 alignment positions, the conserved glycyl residues adopt (phi, ) values which are disallowed for Ala. In-silico mutation of these Gly residues to Ala almost always results in steric hindrance involving C atom of Ala as one would expect by comparing Ramachandran maps for Ala and Gly. Rare occurrence of the disallowed glycyl conformations even in ultrahigh resolution protein structures are accompanied by short contacts in the crystal structures and such disallowed conformations are not conserved in the homologues. These observations raise the doubt on the accuracy of such glycyl conformations in proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The allowed and the ``disallowed'' regions in the celebrated Ramachandran map (phi-psi] map) was elegantly deduced by Ramachandran, Ramakrishnan and Sasisekharan even before the protein crystal structures became available. This powerful map was derived based on rigid geometry of the peptide group and later several investigations on protein crystal structures reported the occurrence of a small fraction of the phi-psi] torsion angles in the disallowed region. The question is what factors make these residues adopt disallowed conformations? Is it driven by the necessity to maintain the overall topology or is it associated with function or is it just that the disallowed conformations are extreme limits of the allowed conformations? Today, with the availability of a large number of high resolution crystal structures, we have revisited this problem. Apart from validating some of the earlier findings such as residue propensities, preferred location in the secondary structure, we have explored their spatial neighborhood preferences using the protein structure network PSN] approach developed in our lab. Finally, the structural and functional implications of the disallowed conformations are examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a dataset of 1164 crystal structures of largely non-homologous proteins defined at a resolution of 1.5 angstrom or better, we have investigated the (phi,psi) preferences of 20 residue types by considering the residues which occur in loops. Propensities of residue types to occur in the loops with (phi,psi) values in the aa region of the Ramachandran map has a poor correlation coefficient of 0.48 to the Chou-Fasman propensities of the residue types to occur in the a-helical segments. However the correlation coefficient between propensities of residues in loops to adopt beta conformations and those in beta-sheet is much higher (0.95). These observations suggest that a-helix formation is well influenced by the local amino acid sequence while intrinsic preference of residue types for beta-sheet plays a major role in the formation of beta-sheet. The main chain polar groups of residues in loops, that can affect the (phi,psi) values, can be involved in intra-molecular hydrogen bonding. Therefore we investigated further by considering subset of residues in loops with low (0 to 2) number of intra-molecular hydrogen bonds per residue involving main chain polar atoms. For this subset, the correlation coefficients between propensities for alpha-helix and alpha(R) region and between beta-sheet and beta-region are 0.26 and 0.64 respectively. This reiterates higher intrinsic tendency of beta-region favouring residues to adopt beta-sheet than alpha(R) region favouring residues to adopt alpha-helical structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Folding into compact globular structures, with well-defined modules of secondary structure, appears to be a characteristic of long polypeptide chains, with a specific patterning of coded amino acid residues along the length of sequence. Cooperative hydrogen bond driven secondary structure formation and solvent forces, which contribute favorably to the entropy of folding, by promoting compaction of the polymeric chain, have long been discussed as major determinants of the folding process. First principles design approaches, which use non-coded amino acids, employ an alternative structure directing strategy, by using amino acid residues which exhibit a strong conformational bias for specific regions of the Ramachandran map. This overview of ongoing studies in the authors' laboratory, attempts to explore the use of conformationally restricted amino acid residues in the design of peptides with well-defined secondary structures. Short peptides composed of 20 genetically coded amino acids usually exist in solution as an ensemble of equilibrating conformations. Apolar peptide sequences, which are readily soluble in organic solvents like chloroform and methanol, facilitate formation of structures which are predominately driven by intramolecular hydrogen bond formation. The choice of sequences containing residues with a limited range of conformational choices strongly favors formation of local turn structures, stabilized by short range intramolecular hydrogen bonds. Two residue beta-turns can nucleate either helical or hairpin folding, depending on the precise conformation of the turn segment Restriction of the conformational space available to amino acid residues is easily achieved by introduction of an additional alkyl group at the C alpha carbon atom or by side chain backbone cyclization, as in proline. Studies of synthetic sequences incorporating two prototype residues alpha-aminoisobutyric acid (Aib) and D-proline (DPro) illustrate the utility of the strategy in construction of helices and hairpins. Extensions to the design of conformationally switchable sequences and structurally defined hybrid peptides containing backbone homologated residues are also surveyed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naive Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (approximate to 85%) and specific (approximate to 95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. Proteins 2014; 82:1219-1234. (c) 2013 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylenetetrahydrofolate dehydrogenase-cyclohydrolase (FolD) catalyzes interconversion of 5,10-methylene-tetrahydrofolate and 10-formyl-tetrahydrofolate in the one-carbon metabolic pathway. In some organisms, the essential requirement of 10-formyl-tetrahydrofolate may also be fulfilled by formyltetrahydrofolate synthetase (Fhs). Recently, we developed an Escherichia coli strain in which the folD gene was deleted in the presence of Clostridium perfringens fhs (E. coli Delta folD/p-fhs) and used it to purify FolD mutants (free from the host-encoded FolD) and determine their biological activities. Mutations in the key residues of E. coli FolD, as identified from three-dimensional structures (D121A, Q98K, K54S, Y50S, and R191E), and a genetic screen (G122D and C58Y) were generated, and the mutant proteins were purified to determine their kinetic constants. Except for the R191E and K54S mutants, others were highly compromised in terms of both dehydrogenase and cyclohydrolase activities. While the R191E mutant showed high cyclohydrolase activity, it retained only a residual dehydrogenase activity. On the other hand, the K54S mutant lacked the cyclohydrolase activity but possessed high dehydrogenase activity. The D121A and G122D (in a loop between two helices) mutants were highly compromised in terms of both dehydrogenase and cyclohydrolase activities. In vivo and in vitro characterization of wild-type and mutant (R191E, G122D, D121A, Q98K, C58Y, K54S, and Y50S) FolD together with three-dimensional modeling has allowed us to develop a better understanding of the mechanism for substrate binding and catalysis by E. coli FolD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diaminopropionate ammonialyase (DAPAL), a fold-typeII pyridoxal 5-phosphate-dependent enzyme, catalyzes the ,-elimination of diaminopropionate (DAP) to pyruvate and ammonia. DAPAL was able to utilize both d- and l-DAP as substrates with almost equal efficiency. Mutational analysis of functionally important residues such as Thr385, Asp125 and Asp194 was carried out to understand the mechanism by which the isomers are hydrolyzed. Further, the putative residues involved in the formation of disulfide bond Cys271 and Cys299 were also mutated. T385S, T385D sDAPAL were as active with dl-DAP as substrate as sDAPAL, whereas the later exhibited a threefold increase in catalytic efficiency with d-Ser as substrate. Further analysis of these mutants suggested that DAPAL might follow an anti-E-2 mechanism of catalysis that does not involve the formation of a quinonoid intermediate. Of the two mutants of Asp125, D125E showed complete loss of activity with d-DAP as substrate, whereas the reaction with l-DAP was not affected significantly, demonstrating that Asp125 was essential for abstraction of protons from the d-isomer. By contrast, mutational analysis of Asp194 showed that the residue may not be directly involved in proton abstraction from l-DAP. sDAPAL does not form a disulfide bond in solution, although the position of Cys299 and Cys271 in the modeled structure of sDAPAL favored the formation of a disulfide bond. Further, unlike eDAPAL, sDAPAL could be activated by monovalent cations. Mutation of the cysteine residues showed that Cys271 may be involved in coordinating the monovalent cation, as observed in the case of other fold-typeII enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that the AAV2 vector is targeted for destruction in the cytoplasm by the host cellular kinase/ubiquitination/proteasomal machinery and that modification of their targets on AAV2 capsid may improve its transduction efficiency. In vitro analysis with pharmacological inhibitors of cellular serine/threonine kinases (protein kinase A, protein kinase C, casein kinase II) showed an increase (20-90%) on AAV2-mediated gene expression. The three-dimensional structure of AAV2 capsid was then analyzed to predict the sites of ubiquitination and phosphorylation. Three phosphodegrons, which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, were identified. Mutation targets comprising eight serine (S) or seven threonine (T) or nine lysine (K) residues were selected in and around phosphodegrons on the basis of their solvent accessibility, overlap with the receptor binding regions, overlap with interaction interfaces of capsid proteins, and their evolutionary conservation across AAV serotypes. AAV2-EGFP vectors with the wild-type (WT) capsid or mutant capsids (15 S/T -> alanine A] or 9 K -> arginine R] single mutant or 2 double K -> R mutants) were then evaluated in vitro. The transduction efficiencies of 11 S/T -> A and 7 K -> R vectors were significantly higher (similar to 63-90%) than the AAV2-WT vectors (similar to 30-40%). Further, hepatic gene transfer of these mutant vectors in vivo resulted in higher vector copy numbers (up to 4.9-fold) and transgene expression (up to 14-fold) than observed from the AAV2-WT vector. One of the mutant vectors, S489A, generated similar to 8-fold fewer antibodies that could be cross-neutralized by AAV2-WT. This study thus demonstrates the feasibility of the use of these novel AAV2 capsid mutant vectors in hepatic gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly conserved residues in enzymes are often found to be clustered close to active sites, suggesting that functional constraints dictate the nature of amino acid residues accommodated at these sites. Using the Plasmodiumfalciparum triosephosphate isomerase (PfTIM) enzyme () as a template, we have examined the effects of mutations at positions 64 and 75, which are not directly involved in the proton transfer cycle. Thr (T) occurring at position 75 is completely conserved, whereas only Gln (Q) and Glu (E) are accommodated at position 64. Biophysical and kinetic data are reported for four T75 (T75S/V/C/N) and two Q64 (Q64N/E) mutants. The dimeric structure is weakened in the Q64E and Q64N mutants, whereas dimer integrity is unimpaired in all four T75 mutants. Measurement of the concentration dependence of enzyme activity permits an estimate of K-d values for dimer dissociation (Q64N=73.79.2nm and Q64E=44.6 +/- 8.4nm). The T75S/V/C mutants have activities comparable to the wild-type enzyme, whereas a fourfold drop is observed for T75N. All four T75 mutants show a dramatic fall in activity between 35 degrees C and 45 degrees C. Crystal structure determination of the T75S/V/N mutants provides insights into the variations in local interactions, with the T75N mutant showing the largest changes. Hydrogen-bond interactions determine dimer stability restricting the choice of residues at position 64 to Gln (Q) and Glu (E). At position 75, the overwhelming preference for Thr (T) may be dictated by the imperative of maintaining temperature stability of enzyme activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal state conformations of three peptides containing the alpha, alpha-dialkylated residues, alpha,alpha-di-n-propylglycine (Dpg) and alpha,alpha-di-n-butylglycine (Dbg), have been established by x-ray diffraction. Boc-Ala-Dpg-Ala-OMe (I) and Boc-Ala-Dbg-Ala-OMe (III) adopt distorted type II beta-turn conformations with Ala (1) and Dpg/Dbg (2) as the corner residues. In both peptides the conformational angles at the Dxg residue (I: phi = 66.2 degrees, psi = 19.3 degrees; III: phi = 66.5 degrees, psi = 21.1 degrees) deviate appreciably from ideal values for the i + 2 residue in a type II beta-turn. In both peptides the observed (N...O) distances between the Boc CO and Ala(3) NH groups are far too long (I: 3.44 Angstrom; III: 3.63 Angstrom) for an intramolecular 4 --> 1 hydrogen bond. Boc-Ala-Dpg-Ala-NHMe (II) crystallizes with two independent molecules in the asymmetric unit. Both molecules IIA and IIB adopt consecutive beta-turn (type III-III in IIA and type III-I in IIB) or incipient 3(10)-helical structures, stabilized by two intramolecular 4 --> 1 hydrogen bonds. In all four molecules the bond angle N-C-alpha-C' (tau) at the Dxg residues are greater than or equal to 110 degrees. The observation of conformational angles in the helical region of phi,psi space at these residues is consistent with theoretical predictions.