107 resultados para spatial shaping
Resumo:
Three-dimensional (3D) resolution improvement in multi-photon multiple-excitation-spot-optical microscopy is proposed. Specially designed spatial filter is employed for improving the overall 3D resolution of the imaging system. An improvement up to a factor of 14.5 and sub-femto liter volume excitation is achieved. The system shows substantial sidelobe reduction (<4%) due to the non-linear intensity dependence of multiphoton process. Polarization effect on x-oriented and freely rotating dipoles shows dramatic change in the field distribution at the focal-plane. The resulting point-spread function has the ability to produce several strongly localized polarization dependent field patterns which may find applications in optical engineering and bioimaging.
Resumo:
One of the long standing problems in quantum chemistry had been the inability to exploit full spatial and spin symmetry of an electronic Hamiltonian belonging to a non-Abelian point group. Here, we present a general technique which can utilize all the symmetries of an electronic (magnetic) Hamiltonian to obtain its full eigenvalue spectrum. This is a hybrid method based on Valence Bond basis and the basis of constant z-component of the total spin. This technique is applicable to systems with any point group symmetry and is easy to implement on a computer. We illustrate the power of the method by applying it to a model icosahedral half-filled electronic system. This model spans a huge Hilbert space (dimension 1,778,966) and in the largest non-Abelian point group. The C60 molecule has this symmetry and hence our calculation throw light on the higher energy excited states of the bucky ball. This method can also be utilized to study finite temperature properties of strongly correlated systems within an exact diagonalization approach. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Monitoring and visualizing specimens at a large penetration depth is a challenge. At depths of hundreds of microns, several physical effects (such as, scattering, PSF distortion and noise) deteriorate the image quality and prohibit a detailed study of key biological phenomena. In this study, we use a Bessel-like beam in-conjugation with an orthogonal detection system to achieve depth imaging. A Bessel-like penetrating diffractionless beam is generated by engineering the back-aperture of the excitation objective. The proposed excitation scheme allows continuous scanning by simply translating the detection PSF. This type of imaging system is beneficial for obtaining depth information from any desired specimen layer, including nano-particle tracking in thick tissue. As demonstrated by imaging the fluorescent polymer-tagged-CaCO3 particles and yeast cells in a tissue-like gel-matrix, the system offers a penetration depth that extends up to 650 mu m. This achievement will advance the field of fluorescence imaging and deep nano-particle tracking.
Resumo:
Spatial modulation (SM) and space shift keying (SSK) are relatively new modulation techniques which are attractive in multi-antenna communications. Single carrier (SC) systems can avoid the peak-to-average power ratio (PAPR) problem encountered in multicarrier systems. In this paper, we study SM and SSK signaling in cyclic-prefixed SC (CPSC) systems on MIMO-ISI channels. We present a diversity analysis of MIMO-CPSC systems under SSK and SM signaling. Our analysis shows that the diversity order achieved by (n(t), n(r)) SSK scheme and (n(t), n(r), Theta(M)) SM scheme in MIMO-CPSC systems under maximum-likelihood (ML) detection is n(r), where n(t), n(r) denote the number of transmit and receive antennas and Theta(M) denotes the modulation alphabet of size M. Bit error rate (BER) simulation results validate this predicted diversity order. Simulation results also show that MIMO-CPSC with SM and SSK achieves much better performance than MIMO-OFDM with SM and SSK.
Resumo:
We study the question of determining locations of base stations (BSs) that may belong to the same or to competing service providers. We take into account the impact of these decisions on the behavior of intelligent mobile terminals that can connect to the base station that offers the best utility. The signal-to-interference-plus-noise ratio (SINR) is used as the quantity that determines the association. We first study the SINR association-game: We determine the cells corresponding to each base stations, i.e., the locations at which mobile terminals prefer to connect to a given base station than to others. We make some surprising observations: 1) displacing a base station a little in one direction may result in a displacement of the boundary of the corresponding cell to the opposite direction; 2) a cell corresponding to a BS may be the union of disconnected subcells. We then study the hierarchical equilibrium in the combined BS location and mobile association problem: We determine where to locate the BSs so as to maximize the revenues obtained at the induced SINR mobile association game. We consider the cases of single frequency band and two frequency bands of operation. Finally, we also consider hierarchical equilibria in two frequency systems with successive interference cancellation.
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.
Resumo:
In this paper, we propose modulation diversity techniques for Spatial Modulation (SM) system using Complex Interleaved Orthogonal Design (CIOD). Specifically, we show that the standard SM scheme can achieve a transmit diversity order of two by using the CIOD meant for two transmit antenna system without incurring any additional system complexity or bandwidth requirement. Furthermore, we propose a low-complexity maximum likelihood detector for our CIOD based SM schemes by exploiting the structure of the CIOD. We show with our simulation results that the proposed schemes offer transmit diversity order of two and give a better symbol error rate performance than the conventional SM scheme.
Resumo:
Novel transmit antenna selection techniques are conceived for Spatial Modulation (SM) systems and their symbol error rate (SER) performance is investigated. Specifically, low-complexity Euclidean Distance optimized Antenna Selection (EDAS) and Capacity Optimized Antenna Selection (COAS) are studied. It is observed that the COAS scheme gives a better SER performance than the EDAS scheme. We show that the proposed antenna selection based SM systems are capable of attaining a significant gain in signal-to-noise ratio (SNR) compared to conventional SM systems, and also outperform the conventional MIMO systems employing antenna selection at both low and medium SNRs.
Resumo:
This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.
Resumo:
Intraspecific competition is a key factor shaping space-use strategies and movement decisions in many species, yet how and when neighbors utilize shared areas while exhibiting active avoidance of one another is largely unknown. Here, we investigated temporal landscape partitioning in a population of wild baboons (Papio cynocephalus). We used global positioning system (GPS) collars to synchronously record the hourly locations of five baboon social groups for similar to 900 days, and we used behavioral, demographic, and life history data to measure factors affecting use of overlap areas. Annual home ranges of neighboring groups overlapped substantially, as predicted (baboons are considered non-territorial), but home ranges overlapped less when space use was assessed over shorter time scales. Moreover, neighboring groups were in close spatial proximity to one another on fewer days than predicted by a null model, suggesting an avoidance-based spacing pattern. At all time scales examined (monthly, biweekly, and weekly), time spent in overlap areas was greater during time periods when groups fed on evenly dispersed, low-quality foods. The percent of fertile females in social groups was negatively correlated with time spent in overlap areas only during weekly time intervals. This suggests that broad temporal changes in ecological resources are a major predictor of how intensively overlap areas are used, and groups modify these ecologically driven spacing patterns at short time scales based on female reproductive status. Together, these findings offer insight into the economics of territoriality by highlighting the dynamics of spacing patterns at differing time scales.
Resumo:
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.
Resumo:
Daily rainfall datasets of 10 years (1998-2007) of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) version 6 and India Meteorological Department (IMD) gridded rain gauge have been compared over the Indian landmass, both in large and small spatial scales. On the larger spatial scale, the pattern correlation between the two datasets on daily scales during individual years of the study period is ranging from 0.4 to 0.7. The correlation improved significantly (similar to 0.9) when the study was confined to specific wet and dry spells each of about 5-8 days. Wavelet analysis of intraseasonal oscillations (ISO) of the southwest monsoon rainfall show the percentage contribution of the major two modes (30-50 days and 10-20 days), to be ranging respectively between similar to 30-40% and 5-10% for the various years. Analysis of inter-annual variability shows the satellite data to be underestimating seasonal rainfall by similar to 110 mm during southwest monsoon and overestimating by similar to 150 mm during northeast monsoon season. At high spatio-temporal scales, viz., 1 degrees x1 degrees grid, TMPA data do not correspond to ground truth. We have proposed here a new analysis procedure to assess the minimum spatial scale at which the two datasets are compatible with each other. This has been done by studying the contribution to total seasonal rainfall from different rainfall rate windows (at 1 mm intervals) on different spatial scales (at daily time scale). The compatibility spatial scale is seen to be beyond 5 degrees x5 degrees average spatial scale over the Indian landmass. This will help to decide the usability of TMPA products, if averaged at appropriate spatial scales, for specific process studies, e.g., cloud scale, meso scale or synoptic scale.
Resumo:
``The goal of this study was to examine the effect of maternal iron deficiency on the developing hippocampus in order to define a developmental window for this effect, and to see whether iron deficiency causes changes in glucocorticoid levels. The study was carried out using pre-natal, post-natal, and pre + post-natal iron deficiency paradigm. Iron deficient pregnant dams and their pups displayed elevated corticosterone which, in turn, differentially affected glucocorticoid receptor (GR) expression in the CA1 and the dentate gyrus. Brain Derived Neurotrophic Factor (BDNF) was reduced in the hippocampi of pups following elevated corticosterone levels. Reduced neurogenesis at P7 was seen in pups born to iron deficient mothers, and these pups had reduced numbers of hippocampal pyramidal and granule cells as adults. Hippocampal subdivision volumes also were altered. The structural and molecular defects in the pups were correlated with radial arm maze performance; reference memory function was especially affected. Pups from dams that were iron deficient throughout pregnancy and lactation displayed the complete spectrum of defects, while pups from dams that were iron deficient only during pregnancy or during lactation displayed subsets of defects. These findings show that maternal iron deficiency is associated with altered levels of corticosterone and GR expression, and with spatial memory deficits in their pups.'' (C) 2013 Elsevier Inc. All rights reserved.