114 resultados para separation theorem
Resumo:
Neutron powder diffraction measurements on Ca2FeReO6 reveal that this double perovskite orders ferrimagnetically and shows anomalous lattice parameter behavior below T-C=521 K. Below similar to300 K and similar to160 K we observe that the high-T monoclinic crystal structure separates into two and three monoclinic phases, respectively. A magnetic field suppresses the additional phases at low T in favor of the highest-T phase. These manifestations of the orbital degree of freedom of Re 5d electrons indicate that these electrons are strongly correlated and the title compound is a Mott insulator, with competing spin-orbitally ordered states.
Resumo:
In this paper, we give a generalization of a result by Borkar and Meyn (2000) 1], on the stability and convergence of synchronous-update stochastic approximation algorithms, to the case of asynchronous stochastic approximations with delays. We then describe an interesting application of the result to asynchronous distributed temporal difference (TD) learning with function approximation and delays. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We have studied the evolution of microstructure when a disordered ternary alloy is quenched into a ternary miscibility gap. We have used computer simulations based on multicomponent Cahn-Hilliard (CH) equations for c(A) and c(B), the compositions (in mole fraction) of A and B, respectively. In this work, we present our results on the effect of relative interfacial energies on the temporal evolution of morphologies during spinodal phase separation of an alloy with average composition, c(A) = 1/4, c(B) = 1/4 and c(C) = 1/2. Interfacial energies between the 'A' rich, 'B' rich and 'C' rich phases are varied by changing the gradient energy coefficients. The phases associated with a higher interfacial energy are found to be more rounded than those with lower energy. Further, the kinetic paths (i.e. the history of A-rich, B-rich and C-rich regions in the microstructure) are also affected significantly by the relative interfacial energies of the three phases.
Resumo:
We have investigated the effect of biaxial strain on local electrical/electronic properties in thin films of La0.7Ca0.3MnO3 with varying degrees of biaxial strain in them. The local electrical properties were investigated as a function of temperature by scanning tunneling spectroscopy (STS) and scanning tunneling potentiometry (STP), along with the bulk probe like conductance fluctuations.The results indicate a positive correlation between the lattice mismatch biaxial strain and the local electrical/electronic inhomogenities observed in the strained sample. This is plausible since the crystal structure of the manganites interfere rather strongly with the magnetic/electronic degrees of freedom. Thus even a small imbalance (biaxial strain) can induce significant changes in the electrical properties of the system.
Resumo:
We formulate and prove two versions of Miyachi�s theorem for connected, simply connected nilpotent Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi�s theorem for the group Fourier transform.
Resumo:
We know, from the classical work of Tarski on real closed fields, that elimination is, in principle, a fundamental engine for mechanized deduction. But, in practice, the high complexity of elimination algorithms has limited their use in the realization of mechanical theorem proving. We advocate qualitative theorem proving, where elimination is attractive since most processes of reasoning take place through the elimination of middle terms, and because the computational complexity of the proof is not an issue. Indeed what we need is the existence of the proof and not its mechanization. In this paper, we treat the linear case and illustrate the power of this paradigm by giving extremely simple proofs of two central theorems in the complexity and geometry of linear programming.
Resumo:
We formulate and prove two versions of Miyachi’s theorem for connected, simply connected nilpotent Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi’s theorem for the group Fourier transform.
Resumo:
Earlier desinent cavitation studies on a 1/8 caliber ogive by one of the authors (J. W. H.) showed a sudden change in the magnitude of the desinent cavitation number at a critical velocity. In the present work it is shown by means of oil-film flow visualization that below the critical velocity a long laminar separation bubble exists whereas above the critical velocity the laminar separation bubble is short. Thus the desinent cavitation characteristics of a 1/8 caliber ogive are governed by the nature of the viscous flow around the body.
Resumo:
The focus of this work is the evaluation and analysis of the state of dispersion of functionalized multiwall carbon nanotubes (CNTs), within different morphologies formed, in a model LCST blend (poly[(alpha-methylstyrene)-co-(acrylonitrile)]/poly(methyl-methacryla te), P alpha MSAN/PMMA). Blend compositions that are expected to yield droplet-matrix (85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA, wt/wt) and co-continuous morphologies (60/40 P alpha MSAN/PMMA, wt/wt) upon phase separation have been combined with two types of CNTs; carboxylic acid functionalized (CNTCOOH) and polyethylene modified (CNTPE) up to 2 wt%. Thermally induced phase separation in the blends has been studied in-situ by rheology and dielectric (conductivity) spectroscopy in terms of morphological evolution and CNT percolation. The state of dispersion of CNTs has been evaluated by transmission electron microscopy. The experimental results indicate that the final blend morphology and the surface functionalization of CNT are the main factors that govern percolation. In presence of either of the CNTs, 60/40 P alpha MSAN/PMMA blends yield a droplet-matrix morphology rather than co-continuous and do not show any percolation. On the other hand, both 85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA blends containing CNTPEs show percolation in the rheological and electrical properties. Interestingly, the conductivity spectroscopy measurements demonstrate that the 15/85 P alpha MSAN/PMMA blends with CNTPEs that show insulating properties at room temperature for the miscible blends reveal highly conducting properties in the phase separated blends (melt state) as a result of phase separation. By quenching this morphology, the conductivity can be retained in the blends even in the solid state. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We study the empirical measure LA of the eigenvalues of nonnormal square matrices of the form A(n) = U(n)T(n)V(n), with U(n), V(n) independent Haar distributed on the unitary group and T(n) diagonal. We show that when the empirical measure of the eigenyalues of T(n) converges, and T(n) satisfies some technical conditions, L(An) converges towards a rotationally invariant measure mu on the complex plane whose support is a single ring. In particular, we provide a complete proof of the Feinberg-Zee single ring theorem [6]. We also consider the case where U(n), V(n) are independently Haar distributed on the orthogonal group.
Resumo:
Condensation of water droplets during rapid evaporation of a polymer solution, under humid conditions, has been known to generate uniformly porous polymer films. Similar porous films are also formed when a solution of the polymer in THF containing small amounts of water, is allowed to evaporate rapidly under air flow; this suggests that water droplets may be formed during the final stages of film formation. In the presence of added surfactants, the interface of water droplets could become lined with the surfactants and consequently the internal walls of the pores generated, upon removal of the water, could become decorated with the hydrophilic head groups of the surfactant molecules. In a series of carefully designed experiments, we have examined the effect of added surfactants, both anionic and cationic, on the formation of porous PMMA films; the films were prepared by evaporating a solution of the polymer in THF containing controlled amounts of aqueous surfactant solutions. We observed that the average size of the pores decreases with increasing surfactant concentration, while it increases with increasing amounts of added water. The size of the pores and their distribution were examined using AFM and IR imaging methods. Although IR imaging possessed inadequate resolution to confirm the presence of surfactants at the pore surface, exchange of the inorganic counterion, such as the sodium-ion of SDS, with suitable ionic organic dyes permitted the unequivocal demonstration of the presence of the surfactants at the interface by the use of confocal fluorescence microscopy.
Resumo:
Although Al(1-x)Ga(x)N semiconductors are used in lighting, displays and high-power amplifiers, there is no experimental thermodynamic information on nitride solid solutions. Thermodynamic data are useful for assessing the intrinsic stability of the solid solution with respect to phase separation and extrinsic stability in relation to other phases such as metallic contacts. The activity of GaN in Al(1-x)Ga(x)N solid solution is determined at 1100 K using a solid-state electrochemical cell: Ga + Al(1-x)Ga(x)N/Fe, Ca(3)N(2)//CaF(2)//Ca(3)N(2), N(2) (0.1 MPa), Fe. The solid-state cell is based on single crystal CaF(2) as the electrolyte and Ca(3)N(2) as the auxiliary electrode to convert the nitrogen chemical potential established by the equilibrium between Ga and Al(1-x)Ga(x)N solid solution into an equivalent fluorine potential. Excess Gibbs free energy of mixing of the solid solution is computed from the results. Results suggest an unusual mixing behavior: a mild tendency for ordering at three discrete compositions (x = 0.25, 0.5 and 0.75) superimposed on predominantly positive deviation from ideality. The lattice parameters exhibit slight deviation from Vegard's law, with the a-parameter showing positive and the c-parameter negative deviation. Although the solid solution is stable in the full range of compositions at growth temperatures, thermodynamic instability is indicated at temperatures below 410 K in the composition range 0.26 <= x <= 0.5. At 355 K, two biphasic regions appear, with terminal solid solutions stable only for 0 <= x <= 0.26 and 0.66 <= x <= 1. The range of terminal solid solubility reduces with decreasing temperature. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.