132 resultados para scalar scattering theory
Resumo:
It is maintained that the one-parameter scaling theory is inconsistent with the physics of Anderson localisation.
Resumo:
A direct and simple approach, utilizing Watson's lemma, is presented for obtaining an approximate solution of a three-part Wiener-Hopf problem associated with the problem of diffraction of a plane wave by a soft strip.
Resumo:
A formula has been derived for the mean-square error in the phases of crystal reflections determined through the multiwavelength anomalous scattering method.The error is written in terms of a simple function of the positions in the complex plane of the 'centres' corresponding to the different wavelengths. For the case of three centres, the mean-square error is inversely proportional to the area of the triangle formed by them.
Resumo:
Bond graph is an apt modelling tool for any system working across multiple energy domains. Power electronics system modelling is usually the study of the interplay of energy in the domains of electrical, mechanical, magnetic and thermal. The usefulness of bond graph modelling in power electronic field has been realised by researchers. Consequently in the last couple of decades, there has been a steadily increasing effort in developing simulation tools for bond graph modelling that are specially suited for power electronic study. For modelling rotating magnetic fields in electromagnetic machine models, a support for vector variables is essential. Unfortunately, all bond graph simulation tools presently provide support only for scalar variables. We propose an approach to provide complex variable and vector support to bond graph such that it will enable modelling of polyphase electromagnetic and spatial vector systems. We also introduced a rotary gyrator element and use it along with the switched junction for developing the complex/vector variable's toolbox. This approach is implemented by developing a complex S-function tool box in Simulink inside a MATLAB environment This choice has been made so as to synthesise the speed of S-function, the user friendliness of Simulink and the popularity of MATLAB.
Resumo:
Any (N+M)-parameter Lie group G with an N-parameter subgroup H can be realized as a global group of diffeomorphisms on an M-dimensional base space B, with representations in terms of transformation laws of fields on B belonging to linear representations of H. The gauged generalization of the global diffeomorphisms consists of general diffeomorphisms (or coordinate transformations) on a base space together with a local action of H on the fields. The particular applications of the scheme to space-time symmetries is discussed in terms of Lagrangians, field equations, currents, and source identities. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
The phenomenon of drop formation at conical tips under near zero flow conditions has been investigated using a theoretical approach. The analysis permits the prediction of drop profile and drop volume, until the onset of instability. A semiempirical approach based on the similarity of drop shapes has been adopted to predict the detaching drop volumes at conical tips. The effects of base diameter of the cone, cone angle, interfacial tension, and the densities of the drop and the surrounding fluid on the maximum and detached drop volumes are predicted.
Resumo:
We obtain stringent bounds in the < r(2)>(K pi)(S)-c plane where these are the scalar radius and the curvature parameters of the scalar K pi form factor, respectively, using analyticity and dispersion relation constraints, the knowledge of the form factor from the well-known Callan-Treiman point m(K)(2)-m(pi)(2), as well as at m(pi)(2)-m(K)(2), which we call the second Callan-Treiman point. The central values of these parameters from a recent determination are accomodated in the allowed region provided the higher loop corrections to the value of th form factor at the second Callan-Treiman point reduce the one-loop result by about 3% with F-K/F-pi = 1.21. Such a variation in magnitude at the second Callan-Treiman point yields 0.12 fm(2) less than or similar to < r(2)>(K pi)(S) less than or similar to 0.21 fm(2) and 0.56 GeV-4 less than or similar to c less than or similar to 1.47 GeV-4 and a strong correlation between them. A smaller value of F-K/F-pi shifts both bounds to lower values.
Resumo:
After briefly discussing the question of a distinct mixed valent state and theoretical models for it, the area of greatest theoretical success, namely the mixed valent impurity, is reviewed. Applications to spectroscopy, energetics and Hall effect are then putlined. The independent impurity approximation is inadequate for many properties of the bulk system, which depend on lattice coherence. A recent auxiliary or slave boson approach with a simple mean field limit and fluctuation corrections is summarized. Finally the mixed valent semiconductor is discussed as an outstanding problem.
Resumo:
We discuss the consistency, unitarity and Lorentz invariance of an anomalous U(1) gauge theory in four dimensions. Our analysis is based on an effective low-energy action valid in the chiral symmetry broken phase. The allegedly bad properties of anomalous theories (except non-renormalizability) are examined. It is shown that, in the low-energy context, the theory can be consistently and unitarily quantised, and is formally Lorentz covariant.
Resumo:
The necessary and sufficient condition for the existence of the one-parameter scale function, the /Munction, is obtained exactly. The analysis reveals certain inconsistency inherent in the scaling theory, and tends to support Motts’ idea of minimum metallic conductivity.
Resumo:
A perturbative scaling theory for calculating static thermodynamic properties of arbitrary local impurity degrees of freedom interacting with the conduction electrons of a metal is presented. The basic features are developments of the ideas of Anderson and Wilson, but the precise formulation is new and is capable of taking into account band-edge effects which cannot be neglected in certain problems. Recursion relations are derived for arbitrary interaction Hamiltonians up to third order in perturbation theory. A generalized impurity Hamiltonian is defined and its scaling equations are derived up to third order. The strategy of using such perturbative scaling equations is delineated and the renormalization-group aspects are discussed. The method is illustrated by applying it to the single-impurity Kondo problem whose static properties are well understood.
Resumo:
The necessary and sufficient condition for the existence of the one-parameter scale function, the /Munction, is obtained exactly. The analysis reveals certain inconsistency inherent in the scaling theory, and tends to support Motts’ idea of minimum metallic conductivity.
Resumo:
We report here that the structural origin of an easily reversible Ge15Te83Si2 glass can be a promising candidate for phase change random access memories. In situ Raman scattering studies on Ge15Te83Si2 sample, undertaken during the amorphous set and reset processes, indicate that the degree of disorder in the glass is reduced from off to set state. It is also found that the local structure of the sample under reset condition is similar to that in the amorphous off state. Electron microscopic studies on switched samples indicate the formation of nanometric sized particles of c-SiTe2 structure. ©2009 American Institute of Physics
Resumo:
The measured specific heat of normal liquid 3He shows a plateau for 0.15<1 K; below 0.15 K and above 1 K, it rises linearly with temperature. However, the slope on the high-temperature side is very much reduced compared with the free-Fermi-gas value. We explain these features through a microscopic, thermal spin- and density-fluctuation model. The plateau is due to spin fluctuations which have a low characteristic energy in 3He. Because of the low compressibility, the density fluctuations are highly suppressed; this leads to a reduced slope for CV(T) for high temperatures.