95 resultados para routing in wireless sensor networks.
Resumo:
In many applications of wireless ad hoc networks, wireless nodes are owned by rational and intelligent users. In this paper, we call nodes selfish if they are owned by independent users and their only objective is to maximize their individual goals. In such situations, it may not be possible to use the existing protocols for wireless ad hoc networks as these protocols assume that nodes follow the prescribed protocol without deviation. Stimulating cooperation among these nodes is an interesting and challenging problem. Providing incentives and pricing the transactions are well known approaches to stimulate cooperation. In this paper, we present a game theoretic framework for truthful broadcast protocol and strategy proof pricing mechanism called Immediate Predecessor Node Pricing Mechanism (IPNPM). The phrase strategy proof here means that truth revelation of cost is a weakly dominant-strategy (in game theoretic terms) for each node. In order to steer our mechanism-design approach towards practical implementation, we compute the payments to nodes using a distributed algorithm. We also propose a new protocol for broadcast in wireless ad hoc network with selfish nodes based on IPNPM. The features of the proposed broadcast protocol are reliability and a significantly reduced number of packet forwards compared to the number of network nodes, which in turn leads to less system-wide power consumption to broadcast a single packet. Our simulation results show the efficacy of the proposed broadcast protocol.
Resumo:
The IEEE 802.1le medium access control (MAC) standard provides distributed service differentiation or Quality-of- Service (QoS) by employing a priority system. In 802.1 le networks, network traffic is classified into different priorities or access categories (ACs). Nodes maintain separate queues for each AC and packets at the head-of-line (HOL) of each queue contend for channel access using AC-specific parameters. Such a mechanism allows the provision of differentiated QoS where high priority, performance sensitive traffic such as voice and video applications will enjoy less delay, greater throughput and smaller loss, compared to low priority traffic (e. g. file transfer). The standard implicitly assumes that nodes are honest and will truthfully classify incoming traffic into its appropriate AC. However, in the absence of any additional mechanism, selfish users can gain enhanced performance by selectively classifying low priority traffic as high priority, potentially destroying the QoS capability of the system.
Resumo:
Wireless mesh networks with multi-beam capability at each node through the use of multi-antenna beamforming are becoming practical and attracting increased research attention. Increased capacity due to spatial reuse and increased transmission range are potential benefits in using multiple directional beams in each node. In this paper, we are interested in low-complexity scheduling algorithms in such multi-beam wireless networks. In particular, we present a scheduling algorithm based on queue length information of the past slots in multi-beam networks, and prove its stability. We present a distributed implementation of this proposed algorithm. Numerical results show that significant improvement in delay performance is achieved using the proposed multi-beam scheduling compared to omni-beam scheduling. In addition, the proposed algorithm is shown to achieve a significant reduction in the signaling overhead compared to a current slot queue length approach.
Resumo:
We consider a setting in which several operators offer downlink wireless data access services in a certain geographical region. Each operator deploys several base stations or access points, and registers some subscribers. In such a situation, if operators pool their infrastructure, and permit the possibility of subscribers being served by any of the cooperating operators, then there can be overall better user satisfaction, and increased operator revenue. We use coalitional game theory to investigate such resource pooling and cooperation between operators.We use utility functions to model user satisfaction, and show that the resulting coalitional game has the property that if all operators cooperate (i.e., form a grand coalition) then there is an operating point that maximizes the sum utility over the operators while providing the operators revenues such that no subset of operators has an incentive to break away from the coalition. We investigate whether such operating points can result in utility unfairness between users of the various operators. We also study other revenue sharing concepts, namely, the nucleolus and the Shapely value. Such investigations throw light on criteria for operators to accept or reject subscribers, based on the service level agreements proposed by them. We also investigate the situation in which only certain subsets of operators may be willing to cooperate.
Resumo:
In this article we study the problem of joint congestion control, routing and MAC layer scheduling in multi-hop wireless mesh network, where the nodes in the network are subjected to maximum energy expenditure rates. We model link contention in the wireless network using the contention graph and we model energy expenditure rate constraint of nodes using the energy expenditure rate matrix. We formulate the problem as an aggregate utility maximization problem and apply duality theory in order to decompose the problem into two sub-problems namely, network layer routing and congestion control problem and MAC layer scheduling problem. The source adjusts its rate based on the cost of the least cost path to the destination where the cost of the path includes not only the prices of the links in it but also the prices associated with the nodes on the path. The MAC layer scheduling of the links is carried out based on the prices of the links. We study the e�ects of energy expenditure rate constraints of the nodes on the optimal throughput of the network.
Resumo:
We consider a joint power control and transmission scheduling problem in wireless networks with average power constraints. While the capacity region of a wireless network is convex, a characterization of this region is a hard problem. We formulate a network utility optimization problem involving time-sharing across different "transmission modes," where each mode corresponds to the set of power levels used in the network. The structure of the optimal solution is a time-sharing across a small set of such modes. We use this structure to develop an efficient heuristic approach to finding a suboptimal solution through column generation iterations. This heuristic approach converges quite fast in simulations, and provides a tool for wireless network planning.
Resumo:
We propose two variants of the Q-learning algorithm that (both) use two timescales. One of these updates Q-values of all feasible state-action pairs at each instant while the other updates Q-values of states with actions chosen according to the ‘current ’ randomized policy updates. A sketch of convergence of the algorithms is shown. Finally, numerical experiments using the proposed algorithms for routing on different network topologies are presented and performance comparisons with the regular Q-learning algorithm are shown.
Resumo:
We consider a network in which several service providers offer wireless access to their respective subscribed customers through potentially multihop routes. If providers cooperate by jointly deploying and pooling their resources, such as spectrum and infrastructure (e.g., base stations) and agree to serve each others' customers, their aggregate payoffs, and individual shares, may substantially increase through opportunistic utilization of resources. The potential of such cooperation can, however, be realized only if each provider intelligently determines with whom it would cooperate, when it would cooperate, and how it would deploy and share its resources during such cooperation. Also, developing a rational basis for sharing the aggregate payoffs is imperative for the stability of the coalitions. We model such cooperation using the theory of transferable payoff coalitional games. We show that the optimum cooperation strategy, which involves the acquisition, deployment, and allocation of the channels and base stations (to customers), can be computed as the solution of a concave or an integer optimization. We next show that the grand coalition is stable in many different settings, i.e., if all providers cooperate, there is always an operating point that maximizes the providers' aggregate payoff, while offering each a share that removes any incentive to split from the coalition. The optimal cooperation strategy and the stabilizing payoff shares can be obtained in polynomial time by respectively solving the primals and the duals of the above optimizations, using distributed computations and limited exchange of confidential information among the providers. Numerical evaluations reveal that cooperation substantially enhances individual providers' payoffs under the optimal cooperation strategy and several different payoff sharing rules.
Resumo:
Mobile ad hoc networks (MANETs) is one of the successful wireless network paradigms which offers unrestricted mobility without depending on any underlying infrastructure. MANETs have become an exciting and im- portant technology in recent years because of the rapid proliferation of variety of wireless devices, and increased use of ad hoc networks in various applications. Like any other networks, MANETs are also prone to variety of attacks majorly in routing side, most of the proposed secured routing solutions based on cryptography and authentication methods have greater overhead, which results in latency problems and resource crunch problems, especially in energy side. The successful working of these mechanisms also depends on secured key management involving a trusted third authority, which is generally difficult to implement in MANET environ-ment due to volatile topology. Designing a secured routing algorithm for MANETs which incorporates the notion of trust without maintaining any trusted third entity is an interesting research problem in recent years. This paper propose a new trust model based on cognitive reasoning,which associates the notion of trust with all the member nodes of MANETs using a novel Behaviors-Observations- Beliefs(BOB) model. These trust values are used for detec- tion and prevention of malicious and dishonest nodes while routing the data. The proposed trust model works with the DTM-DSR protocol, which involves computation of direct trust between any two nodes using cognitive knowledge. We have taken care of trust fading over time, rewards, and penalties while computing the trustworthiness of a node and also route. A simulator is developed for testing the proposed algorithm, the results of experiments shows incorporation of cognitive reasoning for computation of trust in routing effectively detects intrusions in MANET environment, and generates more reliable routes for secured routing of data.
Resumo:
In this paper, we have proposed a centralized multicast authentication protocol (MAP) for dynamic multicast groups in wireless networks. In our protocol, a multicast group is defined only at the time of the multicasting. The authentication server (AS) in the network generates a session key and authenticates it to each of the members of a multicast group using the computationally inexpensive least common multiple (LCM) method. In addition, a pseudo random function (PRF) is used to bind the secret keys of the network members with their identities. By doing this, the AS is relieved from storing per member secrets in its memory, making the scheme completely storage scalable. The protocol minimizes the load on the network members by shifting the computational tasks towards the AS node as far as possible. The protocol possesses a membership revocation mechanism and is protected against replay attack and brute force attack. Analytical and simulation results confirm the effectiveness of the proposed protocol.
Resumo:
The broadcast nature of the wireless medium jeopardizes secure transmissions. Cryptographic measures fail to ensure security when eavesdroppers have superior computational capability; however, it can be assured from information theoretic security approaches. We use physical layer security to guarantee non-zero secrecy rate in single source, single destination multi-hop networks with eavesdroppers for two cases: when eavesdropper locations and channel gains are known and when their positions are unknown. We propose a two-phase solution which consists of finding activation sets and then obtaining transmit powers subject to SINR constraints for the case when eavesdropper locations are known. We introduce methods to find activation sets and compare their performance. Necessary but reasonable approximations are made in power minimization formulations for tractability reasons. For scenarios with no eavesdropper location information, we suggest vulnerability region (the area having zero secrecy rate) minimization over the network. Our results show that in the absence of location information average number of eavesdroppers who have access to data is reduced.
Resumo:
In this paper, we propose an eigen framework for transmit beamforming for single-hop and dual-hop network models with single antenna receivers. In cases where number of receivers is not more than three, the proposed Eigen approach is vastly superior in terms of ease of implementation and computational complexity compared with the existing convex-relaxation-based approaches. The essential premise is that the precoding problems can be posed as equivalent optimization problems of searching for an optimal vector in the joint numerical range of Hermitian matrices. We show that the latter problem has two convex approximations: the first one is a semi-definite program that yields a lower bound on the solution, and the second one is a linear matrix inequality that yields an upper bound on the solution. We study the performance of the proposed and existing techniques using numerical simulations.
Resumo:
The aim in this paper is to allocate the `sleep time' of the individual sensors in an intrusion detection application so that the energy consumption from the sensors is reduced, while keeping the tracking error to a minimum. We propose two novel reinforcement learning (RL) based algorithms that attempt to minimize a certain long-run average cost objective. Both our algorithms incorporate feature-based representations to handle the curse of dimensionality associated with the underlying partially-observable Markov decision process (POMDP). Further, the feature selection scheme used in our algorithms intelligently manages the energy cost and tracking cost factors, which in turn assists the search for the optimal sleeping policy. We also extend these algorithms to a setting where the intruder's mobility model is not known by incorporating a stochastic iterative scheme for estimating the mobility model. The simulation results on a synthetic 2-d network setting are encouraging.