133 resultados para relative entropy
Identity, energetics, dynamics and environment of interfacial water molecules in a micellar solution
Resumo:
The structure and energetics of interfacial water molecules in the aqueous micelle of cesium perfluorooctanoate have been investigated, using large-scale atomistic molecular dynamics simulations, with the primary objective of classifying them. The simulations show that the water molecules at the interface fall into two broad classes: bound and free, present in a ratio of 9:1. The bound water molecules can be further categorized on the basis of the number of hydrogen bonds (one or two) that they form with the surfactant headgroups. The hydrogen bonds of the doubly hydrogen-bonded species are found to be, on the average, slightly weaker than those in the singly bonded species. The environment around interfacial water molecules is more ordered than that in the bulk. The surface water molecules have substantially lower potential energy, because of interaction with the micelle. In particular, both forms of bound water have energies that are lower by �2.5-4.0 kcal/ mol. Entropy is found to play an important role in determining the relative concentration of the species.
Resumo:
The cyclic difference sets constructed by Singer are also examples of perfect distinct difference sets (DDS). The Bose construction of distinct difference sets, leads to a relative difference set. In this paper we introduce the concept of partial relative DDS and prove that an optical orthogonal code (OOC) construction due to Moreno et. al., is a partial relative DDS. We generalize the concept of ideal matrices previously introduced by Kumar and relate it to the concepts of this paper. Another variation of ideal matrices is introduced in this paper: Welch ideal matrices of dimension n by (n - 1). We prove that Welch ideal matrices exist only for n prime. Finally, we recast an old conjecture of Golomb on the Welch construction of Costas arrays using the concepts of this paper. This connection suggests that our construction of partial relative difference sets is in a sense, unique
Resumo:
The activity coefficients of oxygen in liquid lead-tin alloys have been measured between 550 and 1100°C by use of solid oxide galvanic cells Pt, Ni-NiO I Zr02 Solid electrolyte I 0 (Pb + Sn), Cermet, Pt Pt, Fe-FeO I Zr02 Solid electrolyte I O(Pb + Sn), Cermet, Pt Alcock and Richardson's quasi-chemical equation, with the coordination number of atoms set to 2, is found to predict successfully the activity coefficients of oxygen in these alloys.The relative partial molar enthalpy and entropy of oxygen ?t 1 atom per cent in the alloys have been calculated from ttva variation of the activity coefficient with temperature. The addition of tin to an unsaturated solution of oxygen in lead is shown to decrease significantly both the partial molar enthalpy and entropy of oxygen. As the measurements were restricted to a narrow range between 750-1100'C in lead-rich alloys, however, the pronounced variation of the partial molar enthalpy of oxygen with temperature at constant alloy composition predicted by the quasi-chemical model could not be verified.
Resumo:
The standard free energies of formation of Zn2Ti04 and ZnTi03 have been determined in the temperature range 930° to i ioo'x from electromotive force measurements on reversible solid oxide galvanic cells;Ag-5at%znll I Pt, + CaO-Zr02 ZnO I II Ag-5at%Zn Y20r Th02 CaO-Zr02 + ,Pt Zn2Ti04+ ZnTi03 and II Ag-5at%Zn CaO-Zr02 + ,Pt ZnTi03+ Ti02 The values may be expressed by the equations,2ZnO (wurtz) + Ti02(rut) -> Zn2Ti04(sp), f:!:.Go = -750-2-46T (±75)cal;ZnO(wurtz) +Ti02(rut) -> ZnTi03(ilmen) ,f:!:.Co = -]600-0·]99T(±50)cal.Combination of the free energy values with the calorimetric heat of formation, and low-temperature and high-temperature heat capacity of Zn2Ti04 reported in literature, suggests a residual entropy of ],9 (±0·6) cal K-1 mol ? for the cubic spinel. Ideal mixing of Zn2+ and Ti4+ ions on the octahedral sites would result in a configurational contribution to the entropy of 2· 75 cal K-1 rnol ".The difference is indicative of short-range ordering of cations on octahedral sites.
Resumo:
The theory, design, and performance of a solid electrolyte twin thermocell for the direct determination of the partial molar entropy of oxygen in a single-phase or multiphase mixture are described. The difference between the Seebeck coefficients of the concentric thermocells is directly related to the difference in the partial molar entropy of oxygen in the electrodes of each thermocell. The measured potentials are sensitive to small deviations from equilibrium at the electrodes. Small electric disturbances caused by simultaneous potential measurements or oxygen fluxes caused by large oxygen potential gradients between the electrodes also disturb the thermoelectric potential. An accuracy of ±0.5 calth K−1 mol−1 has been obtained by this method for the entropies of formation of NiO and NiAl2O4. This “entropy meter” may be used for the measurement of the entropies of formation of simple or complex oxides with significant residual contributions which cannot be detected by heat-capacity measurements.
Resumo:
Measurements a/the Gibbs' energy enthalpy and entrupy vffarmation oj chromites, vanadites and alumlnat.:s 0/ F", Ni. Co'. Mn, Zn Mg and Cd, using solid oxide galvanic cells over a ternperature range extending approximately lOOO°C, have shown that the '~'Ilir"!,,, J'JrIl/iJ~ tion 0/ cubic 2-3 oxide spinel phases (MX!O,), from component oxide (MO) with rock-salt and X.Os whir c(1f'l/!ldwn st!'llt'lw,·. call b,' represented by a semi-empirical correlalion, ~S~ = --LiS + L'i,SM +~S~:"d(±O.3) cal.deg-1 mol-1 where /',.SM Is the entropy 0/calian mixing oillhe tetrahedral alld octahedral sites o/the spinel and Sr:~ is tlie enfropy associaf,'d Wifh Ih,' randomization a/the lahn-Telier distortions. A review a/the methods/or evaluating the cation distriblltion lfl spille!s suggeJ{j' l/r,l! Ihe most promising scheme is based Oil octahedral site preference energies from the crystal field theory for the Iral1silioll IIIl'f"! IlIIL';. For I/""-Irallsifioll melal cal ions site preference energies are derived relative /0 thol'lt fLI, [ransilion metal ions from measured high tClllP('ftJi ure Cal iUlI disll iiJuriol1 in spine! phases thar contail! one IransilioJl metal and another non-transition metal carion. For 2-3 srinds compulatiorrs b,IS"J Oil i.!c[J;' Temkin mixing on each catioll subialtice predici JistributionJ that are In fair agreement with X-ray and 1I1'IIIrOll ditTraction, /IIdg""!ic dll.! electrical propcrries, and spectroscopic measurements. In 2-4 spineis mixing vI ions do not foliow strictly ideal slllIistli:al Jaws, Th,' OIl/up) associated with the randomizalion 0/the Jllhn-Teller dislOriioll" appear to be significant, only ill spinels witll 3d'. 3d', 3d' (ifld~UI' iOtls in tetrahedral and 3d' and 3d9 ions in octahedral positions. Application 0/this structural model for predicting the thermodynamic proputies ofspinel solid .,olutiofl5 or,' illustrated. F,lr complex systems additional contributions arising from strain fields, redox equilibria and off-center ions have to be qllalllififti. The entropy correlation for spinels provides a method for evaluating structure tran:.jormafiofl entropies in silllple o.\id.-s, ["founlllion on the relative stabilities ofoxides in different crystallCtructures is USe/III for computer ea/culaliof! a/phase dfugrullls ofIlIrer,',,1 III (N.lll1ie5 by method, similar to thost: used by Kaufman and Bernstein for refractory alloy systems. Examples oftechnoiogical appliCation tnclude the predictioll ofdeoxidation equilibria in Fe-Mn-AI-O s),slelll at 1600°C duj ,'Ulllpltfalion 0/phase relutions in Fe-Ni-Cr-S system,