157 resultados para reactions
Resumo:
Reaction of sodium 2-formylbenzenesulphonate (1) with thionyl chloride or phosphorous pentachloride gives a mixture of pseudo (2) and normal (3) sulphonyl chlorides. Whereas ammonium 2-carboxybenzenesulphonate (6) gives only the normal sulphonyl chloride (7) on reaction with thionyl chloride, a mixture of normal (7) and pseudo (8) isomers are formed on reaction with phosphorous pentachloride. Sodium 2-benzoylbenzenesulphonate (15), on the other hand, gives the corresponding normal sulphonyl chloride (16) on reaction with both of the reagents mentioned above. Based on these observations it is concluded that γ-keto sulphonic acids are amenable to the influence of γ-carbonyl group as in the case of γ-keto carboxylic acids but to a lesser extent. © 1989 Indian Academy of Sciences.
Resumo:
Precipitation involving mixing of two sets of reverse micellar solutions-containing a reactant and precipitant respectively-has been analyzed. Particle formation in such systems has been simulated by a Monte Carlo (MC) scheme (Li, Y.; Park, C. W. Langmuir 1999, 15, 952), which however is very restrictive in its approach. We have simulated particle formation by developing a general Monte Carlo scheme, using the interval of quiescence technique (IQ). It uses Poisson distribution with realistic, low micellar occupancies of reactants, Brownian collision of micelles with coalescence efficiency, fission of dimers with binomial redispersion of solutes, finite nucleation rate of particles with critical number of molecules, and instantaneous particle growth. With the incorporation of these features, the previous work becomes a special case of our simulation. The present scheme was then used to predict experimental data on two systems. The first is the experimental results of Lianos and Thomas (Chem. Phys. Lett. 1986, 125, 299, J. Colloid Interface Sci. 1987, 117, 505) on formation of CdS nanoparticles. They reported the number of molecules in a particle as a function of micellar size and reactant concentrations, which have been predicted very well. The second is on the formation of Fe(OH)(3) nanoparticles, reported by Li and Park. Our simulation in this case provides a better prediction of the experimental particle size range than the prediction of the authors. The present simulation scheme is general and can be applied to explain nanoparticle formation in other systems.
Resumo:
A few simple three-atom thermoneutral radical exchange reactions (i.e. A + BC --> AB + C) are examined by ab initio SCF methods. Emphasis is laid on the detailed analysis of density matrices rather than on energetics. Results reveal that the sum of the bond orders of the breaking and forming bonds is not conserved to unity, due to development of free valence on the migrating atom 'B' in the transition state. Bond orders, free valence and spin densities on the atoms are calculated. The present analysis shows that the bond-cleavage process is always more advanced than the bond-formation process in the transition state. Further analysis shows a development of the negative spin density on the migrating atom 'B' in the transition state. The depletion of the alpha-spin density on the radical site "A" in the reactant during the reaction lags behind the growth of the alpha-spin density on the terminal atom "C" of the reactant bond, 'B-C' in the transition state. But all these processes are completed simultaneously at the end of the reaction. Hence, the reactions are asynchronous but kinetically concerted in most cases.
Resumo:
Reactions of N,N′-n-propylene-bis(acetylacetoneimino) metal (II), M[n-P-(AI)2], where M=Ni(II) or Pd(II), with nitrosating reagents have been investigated. Mono- and di-nitrosated complexes were obtained selectively, depending upon the concentration of the nitrosating reagents and the reaction time. In both the cases, the γ-CH group is transformed to an ambidentate isonitroso group (>C=NOH), which coordinates to the metal ion by dislodging the already coordinated carbonyl group. The factors influencing the mode of binding of the isonitroso group have been discussed. The bromination reactions of the mono-nitrosated products of M[n-P-(AI)2] and Pd (II) complexes, Pd [E/i-P-(AI)2], where E/i-P-(AI)2 is a dianion of ethylene/i-propylene-bis (acetylacetoneimine), are also reported. The reaction products have been characterized by elemental analyses, electrical conductivity molecular weight determination, and ir, pmr and electronic spectral data.
Resumo:
Allylic alcohols, acetates, carbonates and chlorides can be activated by copper(I) salts towards nucleophilic substitution by carbon nucleophiles under relatively mild conditions.
Resumo:
The reactivity of Grignard reagents towards imines in the presence of catalytic and stoichiometric amounts of titanium alkoxides is reported.Alkylation, reduction, and coupling of imines take place. Whereas reductive coupling is the major reaction in stoichiometric reactions, alkylation is favored in catalytic reactions. Mechanistic studies clearly indicate that intermediates involved in the two reactions are different. Catalytic reactions involve a metal alkyl complex. This has been confirmed by reactions of deuterium-labeled substrates and different alkylating agents. Under the stoichiometric conditions, however, titanium olefin complexes are formed through reductive elimination, probably through a multinuclear intermediate.
Resumo:
An efficient Friedel-Crafts alkylation of aromatic compounds with ethyl alpha -chloro-alpha-(ethylthio)acetate catalysed by ytterbium triflate, followed by desulfurisation of the product provides a convenient methodology for the synthesis of ethyl arylacetates of aromatic and heteroaromatic compounds. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel chelate exchange reaction, leading to the formation of a series of N-alkyl substituent dependent mixed ligand isomeric complexes of the type Ni(R-AB)(AC') and Ni(R-AC)(AB') (Figure 1) are discussed. Here, AB and AC denote two different N-bonded isonitroso-β-keto-imino ligand moieties, while AB' and AC' are the corresponding O-bonded ligand moieties and R is an N-alkyl substituent. The isomeric complexes are suggested to be monomeric, neutral and diamagnetic with an asymmetric square planar geometry. The bonding isomerism of the isonitroso group in these complexes is discussed on the basis of the infrared and proton magnetic resonance spectral studies. A probable mechanism for the preparative route is also proposed.
Resumo:
Photophysics and photochemistry of cyclobutanethiones 1-5 have been studied with the view to generalize the a-cleavage reactions of cyclobutanethiones. The above cyclobutanethiones possess a unit intersystem crossing efficiency from S1 to T1, a high self-quenching rate (-4 X lo9 M-' s-'), and a short triplet lifetime (<0.50 ws). Photolysis of 1-5 yields in benzene a product resulting from 1,3-transposition and in methanol two cyclic thioacetals.The origin of these products is traced to the triplet excited state. A mechanistic scheme involving a-cleavage as the primary photoprocess and diradicals and thiacarbenes as intermediates has been formulated to rationalize the formation of thioacetals and rearranged products. The proposed mechanistic scheme is supported by UHF MIND013 calculations performed on four model systems, cyclobutanethiones and 1,3-cyclobutanedithiones 18-21. These calculations indicate that formation of diradical is favored thermodynamically and kinetically for systems analogous to 19 and 21, while rearrangement to thiacarbene is likely only for those similar to 21.
Resumo:
Reactions of bis(isonitrosoethylacetoacetato)palladium(II), Pd(IEAA)2,with straight chain non-bulky alkylamines, RNH2(R = CH3, C2H5, n-C3H7or n-C4H9) in the mole ratio 1:1 gave bis (B-alkylisonitrosoethylacetoacetateimino)Palladium(II), Pd(R-IEAI)2. In this reaction the coordinated carbonyl groups of Pd(IEAA)2 undergo condensation with amines fo rming Schiff bases (>CNR). On the other hand, the reactions of Pd(IEAA)2 with a large excess of amine yielded N-alkylamido bridgedisonitrosoethylacetoacetatedipalladium(II), μ-(NHR)2[Pd(IEAA)]2 complexes. The complexes are characterized by elemental analyses, magnetic susceptib ility, i.r., p.m.r. and in some cases, nitrogen 1s X-ray photoelectron and mass spectral studies.