285 resultados para polarization holographic optical recording
Resumo:
We discuss the inverse problem associated with the propagation of the field autocorrelation of light through a highly scattering object like tissue. In the first part of the work, we reconstructed the optical absorption coefficient mu(u) and particle diffusion coefficient D-B from simulated measurements which are integrals of a quantity computed from the measured intensity and intensity autocorrelation g(2)(tau) at the boundary. In the second part we recover the mean square displacement (MSD) distribution of particles in an inhomogeneous object from the sampled g(2)(tau) measure on the boundary. From the MSD, we compute the storage and loss moduli distributions in the object. We have devised computationally easy methods to construct the sensitivity matrices which are used in the iterative reconstruction algorithms for recovering these parameters from the measurements. The results of the reconstruction of mu(a), D-B, MSD and the viscoelastic parameters, which are presented, show reasonable good position and quantitative accuracy.
Resumo:
We report on the bacterial protein-based all-optical switches which operate at low laser power, high speed and fulfil most of the requirements to be an ideal all-optical switch without any moving parts involved. This consists of conventional optical waveguides coated with bacteriorhodopsin films at switching locations. The principle of operation of the switch is based on the light-induced refractive index change of bacteriorhodopsin. This approach opens the possibility of realizing proteinbased all-optical switches for communication network, integrated optics and optical computers.
Resumo:
Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K(2)O-Li2O-2.5Nb(2)O(5)) (2 <= x <= 12, in molar ratio) were prepared by the melt-quenching technique. The glassy nature of the as-quenched samples was established via differential scanning calorimetry (DSC). The amorphous and the crystalline nature of the as-quenched and heat-treated samples were confirmed by the X-ray powder diffraction and transmission electron microscopic (TEM) studies. Transparent glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T-g). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.
Resumo:
ESR and optical studies of phosphomolybdate and phosphotungstate glasses are discussed. Both the ESR and optical results indicate that molybdenum or tungsten ions are present in distorted octahedral environments in these glasses. In addition, ESR spectra of Mo5+ and W5+ ions show that the d electrons are localized on molybdenum and tungsten sites respectively. The variation of gperpendicular and gshort parallel values has been examined using appropriate structural models of these glasses.
Resumo:
A comprehensive set of new configurations for the holographic simulation of a wide variety of mirrors is described. These holographically simulated mirrors (HSMs) have been experimentally realized and their imaging performance has been studied.
Resumo:
Anisotropic Gaussian Schell-model (AGSM) fields and their transformation by first-order optical systems (FOS’s) forming Sp(4,R) are studied using the generalized pencils of rays. The fact that Sp(4,R), rather than the larger group SL(4,R), is the relevant group is emphasized. A convenient geometrical picture wherein AGSM fields and FOS’s are represented, respectively, by antisymmetric second-rank tensors and de Sitter transformations in a (3+2)-dimensional space is developed. These fields are shown to separate into two qualitatively different families of orbits and the invariants over each orbit, two in number, are worked out. We also develop another geometrical picture in a (2+1)-dimensional Minkowski space suitable for the description of the action of axially symmetric FOS’s on AGSM fields, and the invariants, now seven in number, are derived. Interesting limiting cases forming coherent and quasihomogeneous fields are analyzed.
Resumo:
We report linear and nonlinear optical properties of the biologically important Na doped ZnO nanoparticle dispersions. Interesting morphological changes involving a spherical to flowerlike transition have been observed with Na doping. Optical absorption measurements show an exciton absorption around 368 nm. Photoluminescence measurements reveal exciton recombination emission, along with shallow and deep trap emissions. The increased intensity of shallow trap emission with Na doping is attributed to oxygen deficiency and shape changes associated with doping. Nonlinear optical measurements show a predominantly two-photon induced, excited state absorption, when excited with 532 nm, 5 ns laser pulses, indicating potential optical limiting applications.
Resumo:
Dichromated gelatin is thought to be a good substitute for photographic emulsions in some uses. The results of a systematic study of the effect of the pH of the developer on the diffraction efficiency of volume holographic gratings recorded in dye sensitized dichromated gelatin are presented.
Resumo:
In supersymmetric theories with R-parity violation, squarks and sleptons can mediate Standard Model fermion–fermion scattering processes. These scalar exchanges in e+e− initiated reactions can give new signals at future linear colliders. We explore use of transverse beam polarization in the study of these signals in the process View the MathML source. We highlight certain asymmetries, which can be constructed due to the existence of the transverse beam polarization, which offer discrimination from the Standard Model (SM) background and provide increased sensitivity to the R-parity violating couplings.
Resumo:
Abstaract is not available.
Resumo:
A first order optical system is investigated in full generality within the context of wave optics. The problem is reduced to a study of the ray transfer matrices. The simplest such systems correspond to axially symmetric propagation. Realization of such systems by centrally located lenses separated by finite distances is studied. It is shown that, contrary to the commonly held view, the set of first order systems that can be realized using axially symmetric thin lenses exhausts the entire SL(2, R) group; at most three lenses are needed to realize any element of this group. In particular, the inverse of free propagation can be so realized. Among anisotropic systems it is again shown that every element of the lens group Sp(4, R) can be realized using a finite number of thin lenses.
Resumo:
The effectiveness of linear matched filters for improved character discrimination in presence of random noise and poorly defined characters has been investigated. We have found that although the performance of the filter in presence of random noise is reasonably good (16 dB gain in signal-to-noise-ratio) its performance is poor when the unknown character is distorted (linear shift and rotation).
Resumo:
Extending the work of earlier papers on the relativistic-front description of paraxial optics and the formulation of Fourier optics for vector waves consistent with the Maxwell equations, we generalize the Jones calculus of axial plane waves to describe the action of the most general linear optical system on paraxial Maxwell fields. Several examples are worked out, and in each case it is shown that the formalism leads to physically correct results. The importance of retaining the small components of the field vectors along the axis of the system for a consistent description is emphasized.
Resumo:
Experiments are described which show that a monobath can be used for rapid in situ processing in a liquid gate for real-time holographic interferometry. This also permits utilization of a very simple solution handling system. Changes in emulsion thickness are reduced to an acceptable level and problems of matching refractive indices are eliminated by exposing and viewing the holograms in water. Excellent null patterns are obtained and real-time holographic interferometry can be carried out over long periods of time.
Resumo:
The article describes a new method for obtaining a holographic image of desired magnification, consistent with the stipulated criteria for its resolution and aberrations.