144 resultados para pass-through effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrolysis of beta-lactam antibiotics using zinc-containing metallo-beta-lactamases (m beta l) is one of the major bacterial defense systems. These enzymes can catalyze the hydrolysis of a variety of antibiotics including the latest generation of cephalosporins, cephamycins, and imipenem. It is shown in this paper that the cephalosporins having heterocyclic - SR side chains are less prone to m beta l-mediated hydrolysis than the antibiotics that do not have such side chains. This is partly due to the inhibition of enzyme activity by the thione moieties eliminated during hydrolysis. When the enzymatic hydrolysis of oxacillin was carried out in the presence of heterocyclic thiones such as MU, MDT, DMETT, and MMA, the catalytic activity of the enzyme was inhibited significantly by these compounds. Although the heterocyclic - SR moieties eliminated from the beta-lactams upon hydrolysis undergo a rapid tautomerism between thione and thiol forms, these compounds act as thiolate ligands toward zinc(II) ions. The structural characterization of two model tetranuclear zinc(II) thiolate complexes indicates that the -SR side chains eliminated from the antibiotics may interact with the zinc(II) metal center of m beta l through their sulfur atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that fatigue in concrete causes excessive deformations and cracking leading to structural failures. Due to quasi-brittle nature of concrete and formation of a fracture process zone, the rate of fatigue crack growth depends on a number of parameters, such as, the tensile strength, fracture toughness, loading ratio and most importantly the structural size. In this work, an analytical model is proposed for estimating the fatigue crack growth in concrete by using the concepts of dimensional analysis and including the above parameters. Knowing the governed and the governing parameters of the physical problem and by using the concepts of self-similarity, a relationship is obtained between different parameters involved. It is shown that the proposed fatigue law is able to capture the size effect in plain concrete and agrees well with different experimental results. Through a sensitivity analysis, it is shown that the structural size plays a dominant role followed by loading ratio and the initial crack length in fatigue crack propagation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous work has shown that irrespective of the route of exposure methyl isocyanate (MIC) caused acute lactic acidosis in rats (Jeevaratnam et al., Arch. Environ. Contam. Toxicol. 19, 314�319, 1990) and the hypoxia was of stagnant type due to tissue hypoperfusion resulting from hypovolemic hypotension in rabbits administered MIC subcutaneously (Jeevarathinam et al., Toxicology 51, 223�240, 1988). The present study was designed to investigate whether MIC could induce histotoxic hypoxia through its effects on mitochondrial respiration. Male Wistar rats were used for liver mitochondrial and submitochondrial particle (SMP) preparation. Addition of MIC to tightly coupled mitochondria in vitro resulted in stimulation of state 4 respiration, abolition of respiratory control, decrease in ADP/O ratio, and inhibition of state 3 oxidation. The oxidation of NAD+-linked substrates (glutamate + malate) was more sensitive (fiveto sixfold) to the inhibitory action of MIC than succinate while cytochrome oxidase remained unaffected. MIC induced twofold delay in the onset of anerobiosis, and cytochrome b reduction in SMP with NADH in vitro confirms inhibition of electron transport at complex I region. MIC also stimulated the ATPase activity in tightly coupled mitochondria while lipid peroxidation remained unaffected. As its hydrolysis products, methylamine and N,N?-dimethylurea failed to elicit any change in vitro; these effects reveal that MIC per se acts as an inhibitor of electron transport and a weak uncoupler. Administration of MIC sc at lethal dose caused a similar change only with NAD+-linked substrates, reflecting impairment of mitochondrial respiration at complex I region and thereby induction of histotoxic hypoxia in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports new results concerning the capabilities of a family of service disciplines aimed at providing per-connection end-to-end delay (and throughput) guarantees in high-speed networks. This family consists of the class of rate-controlled service disciplines, in which traffic from a connection is reshaped to conform to specific traffic characteristics, at every hop on its path. When used together with a scheduling policy at each node, this reshaping enables the network to provide end-to-end delay guarantees to individual connections. The main advantages of this family of service disciplines are their implementation simplicity and flexibility. On the other hand, because the delay guarantees provided are based on summing worst case delays at each node, it has also been argued that the resulting bounds are very conservative which may more than offset the benefits. In particular, other service disciplines such as those based on Fair Queueing or Generalized Processor Sharing (GPS), have been shown to provide much tighter delay bounds. As a result, these disciplines, although more complex from an implementation point-of-view, have been considered for the purpose of providing end-to-end guarantees in high-speed networks. In this paper, we show that through ''proper'' selection of the reshaping to which we subject the traffic of a connection, the penalty incurred by computing end-to-end delay bounds based on worst cases at each node can be alleviated. Specifically, we show how rate-controlled service disciplines can be designed to outperform the Rate Proportional Processor Sharing (RPPS) service discipline. Based on these findings, we believe that rate-controlled service disciplines provide a very powerful and practical solution to the problem of providing end-to-end guarantees in high-speed networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser processing of structure sensitive hypereutectic ductile iron, a cast alloy employed for dynamically loaded automative components, was experimentally investigated over a wide range of process parameters: from power (0.5-2.5 kW) and scan rate (7.5-25 mm s(-1)) leading to solid state transformation, all the way through to melting followed by rapid quenching. Superfine dendritic (at 10(5) degrees C s(-1)) or feathery (at 10(4) degrees C s(-1)) ledeburite of 0.2-0.25 mu m lamellar space, gamma-austenite and carbide in the laser melted and martensite in the transformed zone or heat-affected zone were observed, depending on the process parameters. Depth of geometric profiles of laser transformed or melt zone structures, parameters such as dendrile arm spacing, volume fraction of carbide and surface hardness bear a direct relationship with the energy intensity P/UDb2, (10-100 J mm(-3)). There is a minimum energy intensity threshold for solid state transformation hardening (0.2 J mm(-3)) and similarly for the initiation of superficial melting (9 J mm(-3)) and full melting (15 J mm(-3)) in the case of ductile iron. Simulation, modeling and thermal analysis of laser processing as a three-dimensional quasi-steady moving heat source problem by a finite difference method, considering temperature dependent energy absorptivity of the material to laser radiation, thermal and physical properties (kappa, rho, c(p)) and freezing under non-equilibrium conditions employing Scheil's equation to compute the proportion of the solid enabled determination of the thermal history of the laser treated zone. This includes assessment of the peak temperature attained at the surface, temperature gradients, the freezing time and rates as well as the geometric profile of the melted, transformed or heat-affected zone. Computed geometric profiles or depth are in close agreement with the experimental data, validating the numerical scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (rho VR/eta), the ratio of the viscosities of the wall and fluid eta(r) = (eta(s)/eta), the ratio of radii H and the dimensionless velocity Gamma = (rho V-2/G)(1/2). Here rho is the density of the fluid, G is the coefficient of elasticity of the wall and V is the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter epsilon = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate s((0)), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctuations due to the Reynolds stress. There is an O(epsilon(1/2)) correction to the growth rate, s((1)), due to the presence of a wall layer of thickness epsilon(1/2)R where the viscous stresses are O(epsilon(1/2)) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Gamma and wavenumber k where s((1)) = 0. At these points, the wall layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(epsilon) correction to the growth rate s((2)) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s((2)) increases proportional to (H-1)(-2) for (H-1) much less than 1 (thickness of wall much less than the tube radius), and decreases proportional to H-4 for H much greater than 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous, large surface area, metastable zirconias, are of importance to catalytic, electrochemical, biological, and thermal insulation applications. Combustion synthesis is a very commonly used method for producing such zirconias. However, its rapid nature makes control difficult. A simple modification has been made to traditional solution combustion synthesis to address this problem. It involves the addition of starch to yield a starting mixture with a ``dough-like'' consistency. Just 5 wt% starch is seen to significantly alter the combustion characteristics of the ``dough.'' In particular, it helps to achieve better control over reaction zone temperature that is significantly lower than the one calculated by the adiabatic approximation typically used in self-propagating high-temperature synthesis. The effect of such control is demonstrated by the ability to tune dough composition to yield zirconias with different phase compositions from the relatively elusive ``amorphous'' to monoclinic (> 30 nm grain size) and tetragonal pure zirconia (< 30 nm grain size). The nature of this amorphous phase has been investigated using infrared spectroscopy. Starch content also helps tailor porosity in the final product. Zirconias with an average pore size of about 50 mu m and specific surface area as large as 110 m2/g have been obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chalcopyrite in contact with water is thermodynamically unstable in the presence of oxygen. Oxidation of chalcopyrite may take place due to various factors, e.g., geological environment, mining/comminution, and storage. In this work oxidation of chalcopyrite has been investigated through interfacial electrokinetics. The characteristics of samples obtained from different geological locations as well as the effects of ageing and laboratory oxidation have been delineated. Variation of the solid-liquid ratio was found to have a significant effect on the zeta-potential characteristics of chalcopyrite. The role of constituent metal ions, namely copper and iron, has been studied in the absence and presence of externally added metal ions. The results indicated that the ratio of Cu/Fe on the surface of oxidized chalcopyrite determines the Stern layer potential and under appropriate solution chemistry conditions influences charge reversals. The mineral surfaces, thus, could be either copper-rich or iron-rich as reflected by a shift in pH(iep),,(s). The observed charge reversals have been explained on the basis of a model proposed by James and Healy. (C) 1997 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marked ball grinding rests were carried out in the laboratory with a low grade phosphate ore under different experimental conditions. Two types of balls were used, namely high carbon low alloy (HCLA) cast steel and high chrome cast iron. Results of marked ball grinding tests indicated that ball wear increased with time and showed a sharp increase for wet grinding over dry grinding. Ball wear under wet grinding conditions was also influenced by the gaseous atmosphere in the mill. The grinding ball materials could be arranged in the following order with respect to their overall wear resistance: High chrome cast iron > HCLA cast steel balls Methods to minimize ball wear through control of mill atmosphere and addition of flotation reagents are discussed. Effect of grinding media and additions of flotation reagents during grinding on phosphate ore flotation are also discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tendency of granular materials in rapid shear flow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear how of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The steady state of a two spin system coupled to an isotropic environment and to each other through a dipolar interaction and under irradiation by a monochromatic, circularly polarized radio frequency field is determined ab initio using thermodynamic arguments. This steady state is used to describe the well known nuclear Overhauser effect in liquids. The steady state is also derived from the Solomon-Bloch set of equations used to describe the driven spin. It is shown that in the limit of weak driving, the two solutions coincide. (C) 1999 American Institute of Physics. [S0021-9606(99)71210-9].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticle synthesis in a microemulsion route is typically controlled by changing the water to surfactant ratio, concentration of precursors, and/or concentration of micelles. The experiments carried out in this work with chloroauric acid and hydrazine hydrate as precursors in water/AOT-Brij30/isooctane microemulsions show that the reagent addition rate can also be used to tune the size of stable spherical gold nanoparticles to some extent. The particle size goes through a minimum with variation in feed addition rate. The increase in particle size with an increase in reaction temperature is in agreement with an earlier report. A population balance model is used to interpret the experimental findings. The reduced extent of nucleation at low feed addition rates and suppression of nucleation due to the finite rate of mixing at higher addition rates produce a minimum in particle size. The increase in particle size at higher reaction temperatures is explained through an increase in fusion efficiency of micelles which dissipates supersaturation; increase in solubility is shown to play an insignificant role. The moderate polydispersity of the synthesized particles is due to the continued nucleation and growth of particles. The polydispersity of micelle sizes by itself plays a minor role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (ρVR / η), the ratio of the viscosities of the wall and fluid ηr = (ηs/η), the ratio of radii H and the dimensionless velocity Γ = (ρV2/G)1/2. Here ρ is the density of the fluid, G is the coefficient of elasticity of the wall and Vis the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter ε = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate do), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctruations due to the Reynolds strees. There is an O(ε1/2) correction to the growth rate, s(1), due to the presence of a wall layer of thickness ε1/2R where the viscous stresses are O(ε1/2) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Γ and wavenumber k where s(l) = 0. At these points, the wail layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(ε) correction to the growth rate s(2) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s(2) increases [is proportional to] (H − 1)−2 for (H − 1) [double less-than sign] 1 (thickness of wall much less than the tube radius), and decreases [is proportional to] (H−4 for H [dbl greater-than sign] 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elasto-plastic response of bulk metallic glasses (BMGs) follows closely the response of granular materials through pressure dependent (or normal stress) yield locus and shear stress induced material dilatation. On a micro-structural level, material dilatation is responsible for stress softening and formation of localized shear band, however its influence on the macro-scale flow and deformation is largely unknown. In this work, we systematically analyze the effect of material dilatation on the gross indentation response of Zr-based BMG via finite element simulation. The strengthening/softening effect on the load-depth response and corresponding stress-strain profiles are presented in light of differences in elastic-plastic regimes under common indenters. Through comparison with existing experimental results, we draw conclusions regarding selection of suitable dilatation parameters for accurately predicting the gross response of BMGs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, the effect of initial microstructure on the texture evolution in 2014 Al alloy during equal channel angular pressing (ECAP) through route A has been reported. Three heat treatment conditions were chosen to generate the initial microstructures, namely (i) the recrystallization anneal (as-received), (ii) solution treatment at 768 K for 1 h, and (iii) solution treatment (768 K for 1 h) plus aging at 468 K for 5 h. Texture analyses were performed using orientation distribution function (ODF) method. The texture strength after ECAP processing was different for the three samples in the order, solutionised > solutionised plus aged condition > as-received. The prominent texture components were A (E) /(A) over bar (E) and B(E)/(B) over bar (E) in addition to several weaker components for the three materials. The strong texture evolution in solutionised condition has been attributed to higher strain hardening of the matrix due to higher amount of solute. In case of the as-received as well as solutionised plus aged alloy, the weaker texture could be due to the strain scattering from extensive precipitate fragmentation and dissolution during ECAP.