62 resultados para neuropsychological testing
Resumo:
The study considers earthquake shake table testing of bending-torsion coupled structures under multi-component stationary random earthquake excitations. An experimental procedure to arrive at the optimal excitation cross-power spectral density (psd) functions which maximize/minimize the steady state variance of a chosen response variable is proposed. These optimal functions are shown to be derivable in terms of a set of system frequency response functions which could be measured experimentally without necessitating an idealized mathematical model to be postulated for the structure under study. The relationship between these optimized cross-psd functions to the most favourable/least favourable angle of incidence of seismic waves on the structure is noted. The optimal functions are also shown to be system dependent, mathematically the sharpest, and correspond to neither fully correlated motions nor independent motions. The proposed experimental procedure is demonstrated through shake table studies on two laboratory scale building frame models.
Resumo:
This paper establishes the design requirements for the development and testing of direct supercritical carbon dioxide (sCO2) solar receivers. Current design considerations are based on the ASME Boiler and Pressure Vessel Code (BPVC). Section I (BPVC) considers typical boilers/superheaters (i.e. fired pressure vessels) which work under a constant low heat flux. Section VIII (BPVC) considers pressure vessels with operating pressures above 15 psig 2 bar] (i.e. unfired pressure vessels). Section III, Division I - Subsection NH (BPVC) considers a more detailed stress calculation, compared to Section I and Section VIII, and requires a creep-fatigue analysis. The main drawback from using the BPVC exclusively is the large safety requirements developed for nuclear power applications. As a result, a new set of requirements is needed to perform detailed thermal-structural analyses of solar thermal receivers subjected to a spatially-varying, high-intensity heat flux. The last design requirements document of this kind was an interim Sandia report developed in 1979 (SAND79-8183), but it only addresses some of the technical challenges in early-stage steam and molten-salt solar receivers but not the use of sCO2 receivers. This paper presents a combination of the ASME BPVC and ASME B31.1 Code modified appropriately to achieve the reliability requirements in sCO(2) solar power systems. There are five main categories in this requirements document: Operation and Safety, Materials and Manufacturing, Instrumentation, Maintenance and Environmental, and General requirements. This paper also includes the modeling guidelines and input parameters required in computational fluid dynamics and structural analyses utilizing ANSYS Fluent, ANSYS Mechanical, and nCode Design Life. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of sCO(2) receivers.