476 resultados para n-dimensional MacLaurine series
Resumo:
Abstract is not available.
Resumo:
The unsteady laminar compressible three-dimensional stagnation-point boundary-layer flow with variable properties has been studied when the velocity of the incident stream, mass transfer and wall temperature vary arbitrarily with time. The second-order unsteady boundary-layer equations for all the effects have been derived by using the method of matched asymptotic expansions. Both nodal and saddle point flows as well as cold and hot wall cases have been considered. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for an accelerating stream, a decelerating stream and a fluctuating stream. The results indicate that the unsteady free stream velocity distributions, the nature of the stagnation point, the mass transfer, the wall temperature and the variation of the density-viscosity product across the boundary significantly affect the skin friction and heat transfer. The variation of the wall temperature with time strongly affects the heat transfer whereas its effect is comparatively less on skin friction. Suction increases the skin friction and heat transfer but injection does the opposite. The skin friction in the x direction due to the combined effects of first- and second-order boundary layers is less than the skin-friction in the x direction due to the first-order boundary layers for all the parameters. The overall skin friction in the z direction and heat transfer are more or less than the first-order boundary layers depending upon the values of the various parameters.
Resumo:
A new four-hole cylindrical cantilever probe is described which could be used for three-dimensional flow surveys. The probe is more compact than the usual cylindrical type allowing for closer approach to a boundary. The probe is robust and gives good reproducibility. It can be used for a wide range of pitch angle. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
We report experimental observation of an unexpectedly large thermopower in mesoscopic two-dimensional (2D) electron systems in GaAs/AlGaA heterostructures at sub-Kelvin temperatures and zero magnetic field. Unlike conventional nonmagnetic high-mobility 2D systems, the thermopower in our devices increases with decreasing temperature below 0.3 K, reaching values in excess of 100 mu V/K, thus exceeding the free electron estimate by more than 2 orders of magnitude. With support from a parallel study of the local density of states, we suggest such a phenomenon to be linked to intrinsic localized states and many-body spin correlations in the system.
Resumo:
Many one-dimensional conductors show pronounced nonlinear electrical conduction. Some of them show very interesting electrical switching from a low conducting state to a high conducting state. Such electrical switching is often associated with memory. These are discussed with particular emphasis on charge transfer complexestmbine-tcnq, tmpd-tcnq, Cs2(tcnq)3,tea-(tcnq) 2 ando-tolidine-iodine.
Resumo:
A three-dimensional analysis is presented for the bending problem of finite thick plates with through-the-thickness cracks. A general solution is obtained for Navier's equations of the theory of elasticity. It is found that the in-plane stresses and the transverse normal stress at the crack front are singular with an inverse square root singularity, while the transverse shear stresses are of the order of unity. Results from a numerical study indicate that the stress intensity factor, which varies across the thickness, is influenced by the thickness ratio in a significant manner. Results from a parametric study and those from a comparative study with existing finite element values are presented.
Resumo:
The unsteady laminar incompressible three-dimensional boundary layer flow and heat transfer on a flat plate with an attached cylinder have been studied when the free stream velocity components and wall temperature vary inversely as linear and quadratic functions of time, respectively. The governing semisimilar partial differential equations with three independent variables have been solved numerically using a quasilinear finite-difference scheme. The results indicate that the skin friction increases with parameter λ which characterizes the unsteadiness in the free stream velocity and the streamwise distance Image , but the heat transfer decreases. However, the skin friction and heat transfer are found to change little along Image . The effect of the Prandtl number on the heat transfer is found to be more pronounced when λ is small, whereas the effect of the dissipation parameter is more pronounced when λ is comparatively large.
Resumo:
A novel method is proposed to treat the problem of the random resistance of a strictly one-dimensional conductor with static disorder. For the probability distribution of the transfer matrix R of the conductor we propose a distribution of maximum information entropy, constrained by the following physical requirements: (1) flux conservation, (2) time-reversal invariance, and (3) scaling with the length of the conductor of the two lowest cumulants of ω, where R=exp(iω→⋅Jbhat). The preliminary results discussed in the text are in qualitative agreement with those obtained by sophisticated microscopic theories.
Resumo:
Time series, from a narrow point of view, is a sequence of observations on a stochastic process made at discrete and equally spaced time intervals. Its future behavior can be predicted by identifying, fitting, and confirming a mathematical model. In this paper, time series analysis is applied to problems concerning runwayinduced vibrations of an aircraft. A simple mathematical model based on this technique is fitted to obtain the impulse response coefficients of an aircraft system considered as a whole for a particular type of operation. Using this model, the output which is the aircraft response can be obtained with lesser computation time for any runway profile as the input.
Resumo:
All the second-order boundary-layer effects have been studied for the steady laminar compressible 3-dimensional stagnation-point flows with variable properties and mass transfer for both saddle and nodal point regions. The governing equations have been solved numerically using an implicit finite-difference scheme. Results for the heat transfer and skin friction have been obtained for several values of the mass-transfer rate, wall temperature, and also for several values of parameters characterizing the nature of stagnation point and variable gas properties. The second-order effects on the heat transfer and skin friction at the wall are found to be significant and at large injection rates, they dominate over the results of the first-order boundary layer, but the effect of large suction is just the opposite. In general, the second-order effects are more pronounced in the saddle-point region than in the nodal-point region. The overall heat-transfer rate for the 3-dimensional flows is found to be more than that of the 2-dimensional flows.
Resumo:
Three new procedures for the extrapolation of series coefficients from a given power series expansion are proposed. They are based on (i) a novel resummation identity, (ii) parametrised Euler transformation (pet) and (iii) a modifiedpet. Several examples taken from the Ising model series expansions, ferrimagnetic systems, etc., are illustrated. Apart from these applications, the higher order virial coefficients for hard spheres and hard discs have also been evaluated using the new techniques and these are compared with the estimates obtained by other methods. A satisfactory agreement is revealed between the two.
Resumo:
The scalar coupled proton NMR spectra of many organic molecules possessing more than one phenyl ring are generally complex due to degeneracy of transitions arising from the closely resonating protons, in addition to several short- and long- range couplings experienced by each proton. Analogous situations are generally encountered in derivatives of halogenated benzanilides. Extraction of information from such spectra is challenging and demands the differentiation of spectrum pertaining to each phenyl ring and the simplification of their spectral complexity. The present study employs the blend of independent spin system filtering and the spin-state selective detection of single quantum (SO) transitions by the two-dimensional multiple quantum (MQ) methodology in achieving this goal. The precise values of the scalar couplings of very small magnitudes have been derived by double quantum resolved experiments. The experiments also provide the relative signs of heteronuclear couplings. Studies on four isomers of dilhalogenated benzanilides are reported in this work.
Resumo:
The ultramicrostructure of phases with n = 1, 2 and 3 in the hypothetical series Bi2WnO3n+3 has been investigated by high resolution electron microscopy and energy dispersive X-ray emission spectroscopy. For n = 1 and 2, well ordered phases with the predicted compositions have been obtained, but for n = 3, a severely disordered assemblage containing intergrowths of the two known structures and strips of the n = 3 member is produced. No evidence for ordered structures with n > 2 has yet been obtained.