68 resultados para montane rain forest
Resumo:
Logging and hunting are two key direct threats to the survival of wildlife in the tropics, and also disrupt important ecosystem processes. We investigated the impacts of these two factors on the different stages of the seed dispersal cycle, including abundance of plants and their dispersers and dispersal of seeds and recruitment, in a tropical forest in north-east India. We focused on hornbills, which are important seed dispersers in these forests, and their food tree species. We compared abundances of hornbill food tree species in a site with high logging and hunting pressures (heavily disturbed) with a site that had no logging and relatively low levels of hunting (less disturbed) to understand logging impacts on hornbill food tree abundance. We compared hornbill abundances across these two sites. We, then, compared the scatter-dispersed seed arrival of five large-seeded tree species and the recruitment of four of those species. Abundances of hornbill food trees that are preferentially targeted by logging were two times higher in the less disturbed site as compared to the heavily disturbed site while that of hornbills was 22 times higher. The arrival of scatter-dispersed seeds was seven times higher in the less disturbed site. Abundances of recruits of two tree species were significantly higher in the less disturbed site. For another species, abundances of younger recruits were significantly lower while that of older recruits were higher in the heavily disturbed site. Our findings suggest that logging reduces food plant abundance for an important frugivore-seed disperser group, while hunting diminishes disperser abundances, with an associated reduction in seed arrival and altered recruitment of animal-dispersed tree species in the disturbed site. Based on our results, we present a conceptual model depicting the relationships and pathways between vertebrate-dispersed trees, their dispersers, and the impacts of hunting and logging on these pathways.
Resumo:
Woody tree species in seasonally dry tropical forests are known to have traits that help them to recover from recurring disturbances such as fire. Two such traits are resprouting and rapid post-fire growth. We compared survival and growth rates of regenerating small-sized individuals (juveniles) of woody tree species after dry season fire (February-March) at eight adjacent pairs of burnt and unburnt transects in a seasonally dry tropical forest in southern India. Juveniles were monitored at 3-mo intervals between August 2009 and August 2010. High juvenile survivorship (>95%) was observed in both burnt and unburnt areas. Growth rates of juveniles, analyzed at the community level as well as for a few species individually (especially fast-growing ones), were distinctly higher in burnt areas compared to unburnt areas after a fire event, particularly during the pre-monsoon season immediately after a fire. Rapid growth by juveniles soon after a fire may be due to lowered competition from other vegetative forms such as grasses, possibly aided by the availability of resources stored belowground. Such an adaptation would allow a juvenile bank to be retained in the understory of a dry forest, from where individuals can grow to a possible fire-tolerant size during favorable conditions.
Resumo:
Hornbills, among the largest and most threatened tropical frugivores, provide important seed dispersal services. Hornbill nest site characteristics are known primarily from wet tropical forests. Nests of the Indian grey hornbill Ocyceros birostris and Oriental pied hornbill Anthracoceros albirostris were characterized in a tropical dry forest. Despite A. albirostris being twice the size of O. birostris, few of the nest cavity attributes were different. A. albirostris nests were surrounded by higher proportion of mixed forest and lower sal forest compared to O. birostris. In this landscape, the larger A. albirostris may prefer to nest in sites with more food plants compared to the smaller O. birostris.
Resumo:
Sacred groves are patches of forests of special spiritual significance to humans, offering also a diverse range of ecological and environmental services. We have attempted here to understand the local hydrological dynamics of a sacred forest, in terms of the benefits the village community derive, in central Western Ghats region of India. A comparative assessment has been made between two small watersheds in terms of their landscape structure (woody species composition) with soil water properties and availability of water in the respective downstream villages. The result shows that, sacred site with more primeval vegetation has close association with soil moisture in comparison to non-sacred site during dry spell of the year. The higher soil moisture ensures year long availability of water in the downstream village of the sacred site which facilitates farming of commercial crops with higher economic returns to the farmers, unlike the farmers in the other village where they face water crisis during the lean season. The study emphasizes the need for conservation endeavour on sacred groves highlighting its potential for water conservation at local and regional levels.
Resumo:
Mangrove forests in meso-tidal areas are completely drained during low tides, forming only temporary habitats for fish. We hypothesised that in such temporary habitats, where stranding risks are high, distance from tidal creeks that provided access to inundated areas during receding tides would be the primary determinant of fish distribution. Factors such as depth, root density and shade were hypothesised to have secondary effects. We tested these hypotheses in a tidally drained mangrove patch in the Andaman Islands, India. Using stake nets, we measured fish abundance and species richness relative to distance from creeks, root density/m(2), shade, water depth and size (total length) of fish. We also predicted that larger fish (including potential predators) would be closer to creeks, as they faced a greater chance of mortality if stranded. Thus we conducted tethering trials to examine if predation would be greater close to the creeks. Generalised linear mixed effects models showed that fish abundance was negatively influenced by increasing creek distance interacting with fish size and positively influenced by depth. Quantile regression analysis showed that species richness was limited by increasing creek distance. Proportion of predation was greatest close to the creeks (0-25 m) and declined with increasing distance. Abundance was also low very close to the creeks, suggesting that close to the creeks predation pressure may be an important determinant of fish abundance. The overall pattern however indicates that access to permanently inundated areas, may be an important determinant of fish distribution in tidally drained mangrove forests.
Resumo:
This study investigated the influence of soil properties on the density and shape of epigeous fungus-growing termite nests in a dry deciduous forest in Karnataka, India. In this environment, Odontotermes obesus produces cathedral shaped mounds. Their density, shape (height and volume) and soil physicochemical properties were analyzed in ferralsol and vertisol environments. No significant difference was observed in O. obesus mound density (n = 2.7 mound ha(-1) on average in the vertisol and ferralsol areas). This study also showed that O. obesus has a limited effect on soil physical properties. No differences in soil particle size, pH, or the C:N ratio and base saturation were measured whereas the C and N contents were reduced and CEC was higher in termite nest soils in both environments. Clay mineralogical composition was also measured, and showed the presence of higher amounts of smectite clays in termite nest soils, which thus explained the increasing CEC despite the reduced C and N content. However, the main difference was the shape of the termite mounds. The degradation of the nests created a hillock of eroded soil at the base of termite mounds in the vertisol while only a thin layer of eroded soil was observed in the ferralsol. The increased degradation of termite mounds in the vertisol is explained by the presence of smectites (2:1 swelling clays), which confer macroscopic swelling and shrinking characteristics to the soil. Soil shrinkage during the dry season leads to the formation of deep cracks in the termite mounds that allow rain to rapidly penetrate inside the mound wall and then breakdown unstable aggregates. In conclusion, it appears that despite a similar abundance, termite mound properties depend to a large extent on the soil properties of their environments. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this study, the fine-scale structure of the diurnal variability of ground-based lightning is systematically compared with satellite-based rain. At the outset, it is shown that tropical variability of lightning exhibits a prominent diurnal mode, much like rain. A comparison of the geographical distribution of the timing of the diurnal maximum shows that there is very good agreement between the two observables over continental and coastal regions throughout the tropics. Following this global tropical comparison, we focus on two regions, Borneo and equatorial South America, both of which show the interplay between oceanward and landward propagations of the phase of the diurnal maximum. Over Borneo, both rain and lightning clearly show a climatological cycle of ``breathing in'' (afternoon to early morning) and ``breathing out'' (morning to early afternoon). Over the equatorial east coast of South America, landward propagation is noticed in rain and lightning from early afternoon to early morning. Along the Pacific coast of South America, both rain and lightning show oceanward propagation. Though qualitatively consistent, over both regions the propagation is seen to extend further in rainfall. Additionally, given that lightning highlights vigorous convection, the timing of its diurnal maximum often precedes that of rainfall in the convective life cycle. (C) 2015 Elsevier B.V. All rights reserved.