301 resultados para mechanical device
Performance studies on mechanical + adsorption hybrid compression refrigeration cycles with HFC 134a
Resumo:
This paper presents the results of an investigation on the efficacy of hybrid compression process for refrigerant HFC 134a in cooling applications. The conventional mechanical compression is supplemented by thermal compression using a string of adsorption compressors. Activated carbon is the adsorbent for the thermal compression segment. The alternatives of bottoming either mechanical or thermal compression stages are investigated. It is shown that almost 40% energy saving is realizable by carrying out a part of the compression in a thermal compressor compared to the case when the entire compression is carried out in a single-stage mechanical compressor. The hybrid compression is feasible even when low grade heat is available. Some performance indictors are defined and evaluated for various configurations.
Resumo:
Tin monosulfide (SnS) films with varying distance between the source and substrate (DSS) were prepared by the thermal evaporation technique at a temperature of 300 degrees C to investigate the effect of the DSS on the physical properties. The physical properties of the as-deposited films are strongly influenced by the variation of DSS. The thickness, Sn to S at.% ratio, grain size, and root mean square (rms) roughness of the films decreased with the increase of DSS. The films grown at DSS = 10 and 15 cm exhibited nearly single-crystalline nature with low electrical resistivity. From Hall-effect measurements, it is observed that the films grown at DSS <= 15 cm have p-type conduction and the films grown at higher distances have n-type conduction due to the variation of the Sn/S ratio. The films grown at DSS = 15 cm showed higher optical band gap of 1.36 eV as compared with the films grown at other distances. The effect of the DSS on the physical properties of SnS films is discussed and reported.
Resumo:
The mechanical properties of amorphous alloys have proven both scientifically unique and of potential practical interest, although the underlying deformation physics of these materials remain less firmly established as compared with crystalline alloys. In this article, we review recent advances in understanding the mechanical behavior of metallic glasses, with particular emphasis on the deformation and fracture mechanisms. Atomistic as well as continuum modeling and experimental work on elasticity, plastic flow and localization, fracture and fatigue are all discussed, and theoretical developments are connected, where possible, with macroscopic experimental responses. The role of glass structure on mechanical properties, and conversely, the effect of deformation upon glass structure, are also described. The mechanical properties of metallic glass-derivative materials – including in situ and ex situ composites, foams and nanocrystal-reinforced glasses – are reviewed as well. Finally, we identify a number of important unresolved issues for the field.
Resumo:
A three-level space phasor generation scheme with common mode elimination and with reduced power device count is proposed for an open end winding induction motor in this paper. The open end winding induction motor is fed by the three-level inverters from both sides. Each two level inverter is formed by cascading two two-level inverters. By sharing the bottom inverter for the two three-level inverters on either side, the power device count is reduced. The switching states with zero common mode voltage variation are selected for PWM switching so that there is no alternating common mode voltage in the pole voltages as well as in phase voltages. Only two isolated DC-links, with half the voltage rating of a conventional three-level neutral point clamped inverter, are needed for the proposed scheme.
Resumo:
FET based MEMS microphones comprise of a flexible diaphragm that works as the moving gate of the transistor. The integrated electromechanical transducer can be made more sensitive to external sound pressure either by increasing the mechanical or the electrical sensitivities. We propose a method of increasing the overall sensitivity of the microphone by increasing its electrical sensitivity. The proposed microphone uses the transistor biased in the sub-threshold region where the drain current depends exponentially on the difference between the gate-to-source voltage and the threshold voltage. The device is made more sensitive without adding any complexity in the mechanical design of the diaphragm.
Resumo:
Fuel cells are emerging as alternate green power producers for both large power production and for use in automobiles. Hydrogen is seen as the best option as a fuel; however, hydrogen fuel cells require recirculation of unspent hydrogen. A supersonic ejector is an apt device for recirculation in the operating regimes of a hydrogen fuel cell. Optimal ejectors have to be designed to achieve best performances. The use of the vector evaluated particle swarm optimization technique to optimize supersonic ejectors with a focus on its application for hydrogen recirculation in fuel cells is presented here. Two parameters, compression ratio and efficiency, have been identified as the objective functions to be optimized. Their relation to operating and design parameters of ejector is obtained by control volume based analysis using a constant area mixing approximation. The independent parameters considered are the area ratio and the exit Mach number of the nozzle. The optimization is carried out at a particularentrainment ratio and results in a set of nondominated solutions, the Pareto front. A set of such curves can be used for choosing the optimal design parameters of the ejector.
Resumo:
Lignin was graft copolymerized with methyl methacrylate using manganic pyrophosphate as initiator. This modified lignin was then blended (up to 50 wt%) with low density polyethylene (LDPE) using a small quantity of poly[ethylene-co-(glycidyl methacrylate)] (PEGMA) compatibilizer. The mechanical properties of the blend were substantially improved by using modified lignin in contrast to untreated lignin. Differential scanning calorimetry studies showed loss of crystallinity of the LDPE phase owing to the interaction between the blend components. Thermogravimetric analysis showed higher thermal stability of modified lignin in the domain of blend processing. This suggested that there is scope for useful utilization of lignin, which could also lead to the development of eco-friendly products. (c) 2005 Society of Chemical Industry.
Resumo:
In this paper, the study of a third-order mechanical oscillator is presented by demonstrating its equivalence to the well-known R.C. multivibrator with two additional reactive elements. The conditions for the oscillator's possession of periodic solutions are presented. It is also shown that under certain conditions, the study of the given third-order autonomous system can be reduced to the study of an equivalent second-order, non-autonomous system.
Resumo:
The crystal structure determination of the anhydrous form of any organic compound has been a challenge because of solvent incorporation during crystallization. A device to grow anhydrous forms of low melting organic solids based on vaporization and condensation by a gradient cooling technique has been designed. Its utility has been evaluated by growing anhydrous forms of ciprofloxacin, midazolam, and ofloxacin. Ciprofloxacin crystallizes in triclinic P (1) over bar, midazolam in monoclinic P2(1)/n, and ofloxacin in the C2/c space group. Comparative studies on the conformational features with solvated structure show no significant variation in the aromatic moieties.
Resumo:
In this study, biodegradable blend of Poly (Ethylene-co-Vinyl Acetate) (EVA) and Ethyl Cellulose (EC) were prepared. Ethylene vinyl alcohol (EVOH) copolymer was used as an interfacial compatibilizer to enhance adhesion between EVA and EC. The melt blended compatibilized biocomposites were examined for mechanical and thermal properties as per the ASTM standards. It has been found that the EC has a reinforcing effect on EVA leading to enhanced tensile strength and also impart biodegradability. Thus, a high loading of 50% EC could be added without compromising Much on the mechanical properties. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase (EC) and the matrix (EVA). The compatibilizing effects of EVOH on these blends were confirmed by the significant improvement in the mechanical properties comparable with neat EVA as also observed by SEM microscopy. The TGA thermograms exhibits two-stage degradation and as EC content increases, the onset temperature for thermal degradation reduces. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 1044-1056, 2010
Resumo:
The mechanical properties of Al-Zn-Mg alloy reinforced with SiCP composites prepared by solidification route were studied by altering the matrix strength with different heat treatments. With respect to the control alloy, the composites have shown similar ageing behaviour in terms of microhardness data at 135 degrees C. It was shown that although composites exhibited enhanced modulus values, the strengthening was found to be dependent on the damage that is occurring during straining. Thus the initial matrix strength plays an important role in determining the strengthening. Consequently, compression data had shown a different trend compared to tension. (C) 2000 Elsevier Science Ltd. All rights reserved.