65 resultados para libreria, Software, Database, ORM, transazionalità
Resumo:
Background: Haemophilus influenzae (H. Influenzae) is the causative agent of pneumonia, bacteraemia and meningitis. The organism is responsible for large number of deaths in both developed and developing countries. Even-though the first bacterial genome to be sequenced was that of H. Influenzae, there is no exclusive database dedicated for H. Influenzae. This prompted us to develop the Haemophilus influenzae Genome Database (HIGDB). Methods: All data of HIGDB are stored and managed in MySQL database. The HIGDB is hosted on Solaris server and developed using PERL modules. Ajax and JavaScript are used for the interface development. Results: The HIGDB contains detailed information on 42,741 proteins, 18,077 genes including 10 whole genome sequences and also 284 three dimensional structures of proteins of H. influenzae. In addition, the database provides ``Motif search'' and ``GBrowse''. The HIGDB is freely accessible through the URL:http://bioserverl.physicslisc.ernetin/HIGDB/. Discussion: The HIGDB will be a single point access for bacteriological, clinical, genomic and proteomic information of H. influenzae. The database can also be used to identify DNA motifs within H. influenzae genomes and to compare gene or protein sequences of a particular strain with other strains of H. influenzae. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Streptococcus pneumoniae causes pneumonia, septicemia and meningitis. S. pneumoniae is responsible for significant mortality both in children and in the elderly. In recent years, the whole genome sequencing of various S. pneumoniae strains have increased manifold and there is an urgent need to provide organism specific annotations to the scientific community. This prompted us to develop the Streptococcus pneumoniae Genome Database (SPGDB) to integrate and analyze the completely sequenced and available S. pneumoniae genome sequences. Further, links to several tools are provided to compare the pool of gene and protein sequences, and proteins structure across different strains of S. pneumoniae. SPGDB aids in the analysis of phenotypic variations as well as to perform extensive genomics and evolutionary studies with reference to S. pneumoniae. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
NrichD
Resumo:
Facial emotions are the most expressive way to display emotions. Many algorithms have been proposed which employ a particular set of people (usually a database) to both train and test their model. This paper focuses on the challenging task of database independent emotion recognition, which is a generalized case of subject-independent emotion recognition. The emotion recognition system employed in this work is a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). McFIS has two components, a neuro-fuzzy inference system, which is the cognitive component and a self-regulatory learning mechanism, which is the meta-cognitive component. The meta-cognitive component, monitors the knowledge in the neuro-fuzzy inference system and decides on what-to-learn, when-to-learn and how-to-learn the training samples, efficiently. For each sample, the McFIS decides whether to delete the sample without being learnt, use it to add/prune or update the network parameter or reserve it for future use. This helps the network avoid over-training and as a result improve its generalization performance over untrained databases. In this study, we extract pixel based emotion features from well-known (Japanese Female Facial Expression) JAFFE and (Taiwanese Female Expression Image) TFEID database. Two sets of experiment are conducted. First, we study the individual performance of both databases on McFIS based on 5-fold cross validation study. Next, in order to study the generalization performance, McFIS trained on JAFFE database is tested on TFEID and vice-versa. The performance The performance comparison in both experiments against SVNI classifier gives promising results.
Resumo:
In this text we present the design of a wearable health monitoring device capable of remotely monitoring health parameters of neonates for the first few weeks after birth. The device is primarily aimed at continuously tracking the skin temperature to indicate the onset of hypothermia in newborns. A medical grade thermistor is responsible for temperature measurement and is directly interfaced to a microcontroller with an integrated bluetooth low energy radio. An inertial sensor is also present in the device to facilitate breathing rate measurement which has been discussed briefly. Sensed data is transferred securely over bluetooth low energy radio to a nearby gateway, which relays the information to a central database for real time monitoring. Low power optimizations at both the circuit and software levels ensure a prolonged battery life. The device is packaged in a baby friendly, water proof housing and is easily sterilizable and reusable.