292 resultados para leaching behavior


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fracture behavior of concrete–concrete interface is characterized using acoustic emission (AE). Beams of different sizes having jointed interface between two different strengths of concrete are tested. The results of load, displacement, CMOD, AE-events and AE-energy are analyzed. The width of fracture process zone and damage zone are computed using AE-data and are found to be independent of size. It is observed that, as the difference in compressive strength of concrete on either side of interface increases, the load carrying capacity, number of AE-events, AE-energy, width of fracture process zone and damage zone decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry sliding wear behavior of die-cast ADC12 aluminum alloy composites reinforced with short alumina fibers were investigated by using a pin-on-disk wear tester. The Al2O3 fibers were 4 mu m in diameter and were present in volume fractions (T-f)ranging from 0.03 to 0.26, The length of the fiber varied from 40 to 200 mu m. Disks of aluminum-alumina composites were rubbed against a pin of nitrided stainless steel SUS440B with a load of 10 N at a sliding velocity of 0.1 m/s. The unreinforced ADC 12 aluminum alloy and their composites containing low volume fractions of alumina (V-f approximate to 0.05) showed a sliding-distance-dependent transition from severe to mild wear. However, composites containing high volume fractions of alumina ( V-f > 0.05) exhibited only mild wear for all sliding distances. The duration of occurrence of the severe wear regime and the wear rate both decrease with increasing volume fraction. In MMCs the wear rate in the mild wear regime decreases with increase in volume fraction: reaching a minimum value at V-f = 0.09 Beyond V-f = 0.09 the wear rate increasesmarginally. On the other hand, the wear rate of the counterface (steel pin) was found to increase moderately with increase in V-f. From the analysis of wear data and detailed examination of (a) worn surfaces, (b) their cross-sections and (c) wear debris, two modes of wear mechanisms have been identified to be operative, in these materials and these are: (i) adhesive wear in the case of unreinforced matrix material and in MMCs with low Vf and (ii) abrasive wear in the case of MMCs with high V-f. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small additions of Cu to the SUS 304H, a high temperature austenitic stainless steel, enhance its high temperature strength and creep resistance. As Cu is known to cause embrittlement, the effect of Cu on room temperature mechanical properties that include fracture toughness and fatigue crack threshold of as-solutionized SUS 304H steel were investigated in this work. Experimental results show a linear reduction in yield and ultimate strengths with Cu addition of up to 5 wt.% while ductility drops markedly for 5 wt.% Cu alloy. However, the fracture toughness and the threshold stress intensity factor range for fatigue crack initiation were found to be nearly invariant with Cu addition. This is because the fracture in this alloy is controlled by the debonding from the matrix of chromium carbide precipitates, as evident from fractography. Cu, on the other hand, remains either in solution or as nano-precipitates and hence does not influence the fracture characteristics. It is concluded that small additions of Cu to 304H will not have adverse effects on its fracture and fatigue behavior. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The asymmetric stress strain behavior under tension/compression in an initial < 100 > B-2-NiAl nanowire is investigated considering two different surface configurations i.e., < 100 >/(0 1 0) (0 0 1) and < 100 >/(0 1 1) (0 - 1 1). This behavior is attributed to two different deformation mechanisms namely a slip dominated deformation under compression and a known twinning dominated deformation under tension. It is also shown that B2 -> BCT (body-centered-tetragonal) phase transformation under tensile loading is independent of the surface configurations for an initial < 100 > oriented NiAl nanowire. Under tensile loading, the nanowire undergoes a stress-induced martensiticphase transformation from an initial B2 phase to BCT phase via twinning along {110} plane with failure strain of similar to 0.30. On the other hand, a compressive loading causes failure of these nanowires via brittle fracture after compressive yielding, with a maximum failure strain of similar to-0.12. Such brittle fracture under compressive loading occurs via slip along {110} plane without any phase transformations. Softening/hardening behavior is also reported for the first time in these nanowires under tensile/compressive loadings, which cause asymmetry in their yield strength behavior in the stress strain space. Result shows that a sharp increase in energy with increasing strain under compressive loading causes hardening of the nanowire, and hence, gives improved yield strength as compared to tensile loading. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, nonhomogeneous Markov chains are proposed for modeling the cracking behavior of reinforced concrete beams subjected to monotonically increasing loads. The model facilitates prediction of the maximum crackwidth at a given load given the crackwidth at a lower load level, and thus leads to a better understanding of the cracking phenomenon. To illustrate the methodology developed, the results of three reinforced concrete beams tested in the laboratory are analyzed and presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a report of our analysis of wave vector dependence of the static dielectric function of a dipolar liquid obtained by a microscopic calculation. At low values of the wave vector (k), the longitudinal dielectric function ϵ(k) increases with k, in contradiction to some assumptions reported in the literature. As the value of k is increased, ϵ(k) diverges at a critical value kc which depends on the value of the long wavelength static dielectric constant (ϵ0) of the liquid. The dielectric function is negative for values of k greater than kc. At large values of k, the calculated ϵ(k) fails to attain the limiting value of unity. We attribute this result to the failure of the point dipole assumption made in the evaluation of the polarization correlation function required by the theory. The behavior of ϵ(k) for the dipolar liquid is compared with that of one component plasma for which reliable results can be obtained over the full range of wave vectors. For both systems, the stability conditions are fulfilled at all values of k. A plausible explanation of this rather exotic behavior of ϵ(k) is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A homologous series of alkyl 6-deoxy-beta-D-glucopyranoside amphiphiles was prepared,in an effort to identify the role of hydroxyl group in the mesomorphic behavior of alkyl glycosides. Synthesis was performed by a chlorination of the sugar moiety in alkyl-beta-D-glucopyranosides with methylsulfonyl chloride in DMF, followed by a metal mediated dehalogenation to secure alkyl 6-deoxy-beta-D-glucopyranosides, wherein the alkyl chain length varied from C-9 to C-16. The mesomorphic behavior of these 6-deoxy alkyl glycosides was assessed using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction method. Whereas the lower homologues exhibited a monotropic SmA phase till sub-ambient temperatures, the higher homologues formed a plastic phase. A partial interdigitized bilaye structure of SmA phase is inferred from experimental d-spacing and computationally derived lengths of the molecules. The results were compared with those of normal alkyl glucopyranosides, retained with hydroxyl groups at C-2-C-6 carbons, and alkyl 2-deoxy-glucopyranosides, devoid of a hydroxyl group at C-2 and the comparison showed important differences in the mesomorphic behavior.(C)2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the near-critical behavior of the susceptibility of a ternary liquid mixture of 3-methylpyridine. water, and sodium bromide as a function of the salt concentration. The susceptibility was determined from light-scattering measurements performed at a scattering angle of 90 degrees in the one-phase region near the locus of lower consolute points. A sharp crossover from asymptotic Ising behavior to mean-field behavior has been observed at concentrations ranging from 8 to 16.5 mass% NaBr. The range of asymptotic Ising behavior shrinks with increasing salt concentration and vanishes at a NaBr concentration of about 17 mass%. where complete mean-field-like behavior of the susceptibility is observed. A simultaneous pronounced increase in the background scattering at concentrations above 15 mass%, as well as a dip in the critical locus at 17 mass % NaBr, suggests that this phenomenon can be interpreted as mean-field tricritical behavior associated with the formation of a microheterogeneous phase due to clustering of the molecules and ions. An analogy with tri critical behavior observed in polymer solutions as well as the possibility of a charge-density-wave phase is also discussed. In addition, we, have observed a third soap-like phase an the liquid-liquid interface in several binary and ternary liquid mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer nanocomposites containing different concentrations of Au nanoparticles have been investigated by small angle X-ray scattering and electronic absorption spectroscopy. The variation in the surface plasmon resonance (SPR) band of Au nanoparticles with concentration is described by a scaling law. The variation in the plasmon band of ReO3 nanoparticles embedded in polymers also follows a similar scaling law. Sistance dependence of plasmon coupling in polymer composites f metal nanoparticles. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric behavior of some powdered polycrystalline samples has been studied in the frequency range of 200 Hz–100 kHz. It is shown that the dielectric behavior in these systems below the Curie temperature is not purely relaxational in its character and cannot be described by any of the models of the dielectric relaxation hitherto put forward. It is also shown that ‘‘isolation’’ of the particles in the powder samples plays a very important role. The origin of this abnormality is thought to be due to the mechanical resonance arising out of the magnetostrictive property of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The system 3-methylpyridine(3MP)+water(H2O)+NaBr has been the subject of an intense scientific debate since the work of Jacob [Phys. Rev. E. 58, 2188 (1988)] and Anisimov [Phys. Rev. Lett. 85, 2336 (2000)]. The crossover critical behavior of this system seemed to show remarkable sensitivity to the weight fraction (X) of the ionic impurity NaBr. In the range X <= 0.10 the system displayed Ising behavior and a pronounced crossover to mean-field behavior in the range 0.10 <= X <= 0.16. A complete mean-field behavior was observed at X=0.17, a result that was later attributed to the existence of long-living nonequilibrium states in this system [Kostko , Phys. Rev. E. 70, 026118 (2004)]. In this paper, we report the near-critical behavior of osmotic susceptibility in the isotopically related ternary system, 3MP+heavy water(D2O)+NaBr. Detailed light-scattering experiments performed at exactly the same NaBr concentrations as investigated by Jacob reveal that the system 3MP+D2O+NaBr shows a simple Ising-type critical behavior with gamma similar or equal to 1.24 and nu similar or equal to 0.63 over the entire NaBr concentration range 0 <= X <= 0.1900. The crossover behavior is predominantly nonmonotonic and is completed well outside the critical domain. An analysis in terms of the effective susceptibility exponent (gamma(eff)) reveals that the crossover behavior is nonmonotonic for 0 <= X <= 0.1793 and tends to become monotonic for X > 0.1793. The correlation length amplitude xi(o), has a value of similar or equal to 2 A for 0.0250 <= X <= 0.1900, whereas for X=0, xi(o)similar or equal to 3.179 A. Since isotopic H -> D substitution is not expected to change the critical behavior of the system, our results support the recent results obtained by Kostko [Phys. Rev. E. 70, 026118 (2004)] that 3MP+H2O+NaBr exhibits universal Ising-type critical behavior typical for other aqueous solutions.