85 resultados para latex spheres
Resumo:
The effect of fluid velocity fluctuations on the dynamics of the particles in a turbulent gas–solid suspension is analysed in the low-Reynolds-number and high Stokes number limits, where the particle relaxation time is long compared with the correlation time for the fluid velocity fluctuations, and the drag force on the particles due to the fluid can be expressed by the modified Stokes law. The direct numerical simulation procedure is used for solving the Navier–Stokes equations for the fluid, the particles are modelled as hard spheres which undergo elastic collisions and a one-way coupling algorithm is used where the force exerted by the fluid on the particles is incorporated, but not the reverse force exerted by the particles on the fluid. The particle mean and root-mean-square (RMS) fluctuating velocities, as well as the probability distribution function for the particle velocity fluctuations and the distribution of acceleration of the particles in the central region of the Couette (where the velocity profile is linear and the RMS velocities are nearly constant), are examined. It is found that the distribution of particle velocities is very different from a Gaussian, especially in the spanwise and wall-normal directions. However, the distribution of the acceleration fluctuation on the particles is found to be close to a Gaussian, though the distribution is highly anisotropic and there is a correlation between the fluctuations in the flow and gradient directions. The non-Gaussian nature of the particle velocity fluctuations is found to be due to inter-particle collisions induced by the large particle velocity fluctuations in the flow direction. It is also found that the acceleration distribution on the particles is in very good agreement with the distribution that is calculated from the velocity fluctuations in the fluid, using the Stokes drag law, indicating that there is very little correlation between the fluid velocity fluctuations and the particle velocity fluctuations in the presence of one-way coupling. All of these results indicate that the effect of the turbulent fluid velocity fluctuations can be accurately represented by an anisotropic Gaussian white noise.
Resumo:
The problem of collision prediction in dynamic environments appears in several diverse fields, which include robotics, air vehicles, underwater vehicles, and computer animation. In this paper, collision prediction of objects that move in 3-D environments is considered. Most work on collision prediction assumes objects to be modeled as spheres. However, there are many instances of object shapes where an ellipsoidal or a hyperboloid-like bounding box would be more appropriate. In this paper, a collision cone approach is used to determine collision between objects whose shapes can be modeled by general quadric surfaces. Exact collision conditions for such quadric surfaces are obtained in the form of analytical expressions in the relative velocity space. For objects of arbitrary shapes, exact representations of planar sections of the 3-D collision cone are obtained.
Resumo:
Finding vertex-minimal triangulations of closed manifolds is a very difficult problem. Except for spheres and two series of manifolds, vertex-minimal triangulations are known for only few manifolds of dimension more than 2 (see the table given at the end of Section 5). In this article, we present a brief survey on the works done in last 30 years on the following:(i) Finding the minimal number of vertices required to triangulate a given pl manifold. (ii) Given positive integers n and d, construction of n-vertex triangulations of different d-dimensional pl manifolds. (iii) Classifications of all the triangulations of a given pl manifold with same number of vertices.In Section 1, we have given all the definitions which are required for the remaining part of this article. A reader can start from Section 2 and come back to Section 1 as and when required. In Section 2, we have presented a very brief history of triangulations of manifolds. In Section 3,we have presented examples of several vertex-minimal triangulations. In Section 4, we have presented some interesting results on triangulations of manifolds. In particular, we have stated the Lower Bound Theorem and the Upper Bound Theorem. In Section 5, we have stated several results on minimal triangulations without proofs. Proofs are available in the references mentioned there. We have also presented some open problems/conjectures in Sections 3 and 5.
Resumo:
The γ-brass structure was for a long time regarded as a modified bcc structure. It is more accurately described in terms of a 26-atom cluster consisting of four interpenetrating icosahedral clusters. An alternative description in terms of a 38-atom cluster is also illuminating. We discuss the γ-brass structure in terms of the packing of spheres and the packing of ‘almost regular’ tetrahedra and demonstrate a close relationship to the helical sphere packings investigated by Boerdijk, who considered the configuration of touching spheres centred at the vertices of a Coxeter helix, and extended it by adding an extra layer of spheres. Adding a further layer of spheres gives a rod-like structure in which every sphere of the original helix is surrounded by twelve others, configured as a somewhat distorted icosahedron. Thus each tetrahedron of the initial structure is then shared by four icosahedra. This 26-sphere cluster is a slightly distorted form of the 26-atom γ-brass cluster.
Resumo:
Avoidance of collision between moving objects in a 3-D environment is fundamental to the problem of planning safe trajectories in dynamic environments. This problem appears in several diverse fields including robotics, air vehicles, underwater vehicles and computer animation. Most of the existing literature on collision prediction assumes objects to be modelled as spheres. While the conservative spherical bounding box is valid in many cases, in many other cases, where objects operate in close proximity, a less conservative approach, that allows objects to be modelled using analytic surfaces that closely mimic the shape of the object, is more desirable. In this paper, a collision cone approach (previously developed only for objects moving on a plane) is used to determine collision between objects, moving in 3-D space, whose shapes can be modelled by general quadric surfaces. Exact collision conditions for such quadric surfaces are obtained and used to derive dynamic inversion based avoidance strategies.
Resumo:
Closed-shell contacts between two copper(I) ions are expected to be repulsive. However, such contacts are quite frequent and are well documented. Crystallographic characterization of such contacts in unsupported and bridged multinuclear copper(I) complexes has repeatedly invited debates on the existence of cuprophilicity. Recent developments in the application of Baders theory of atoms-in-molecules (AIM) to systems in which weak hydrogen bonds are involved suggests that the copper(I)copper(I) contacts would benefit from a similar analysis. Thus the nature of electron-density distributions in copper(I) dimers that are unsupported, and those that are bridged, have been examined. A comparison of complexes that are dimers of symmetrical monomers and those that are dimers of two copper(I) monomers with different coordination spheres has also been made. AIM analysis shows that a bond critical point (BCP) between two Cu atoms is present in most cases. The nature of the BCP in terms of the electron density, ?, and its Laplacian is quite similar to the nature of critical points observed in hydrogen bonds in the same systems. The ? is inversely correlated to Cu?Cu distance. It is higher in asymmetrical systems than what is observed in corresponding symmetrical systems. By examining the ratio of the local electron potential-energy density (Vc) to the kinetic energy density (Gc), |Vc|/Gc at the critical point suggests that these interactions are not perfectly ionic but have some shared nature. Thus an analysis of critical points by using AIM theory points to the presence of an attractive metallophilic interaction similar to other well-documented weak interactions like hydrogen bonding.
Resumo:
We construct for free groups, which are codimension one analogues of geodesic laminations on surfaces. Other analogues that have been constructed by several authors are dimension-one instead of codimension-one. Our main result is that the space of such laminations is compact. This in turn is based on the result that crossing, in the sense of Scott-Swarup, is an open condition. Our construction is based on Hatcher's normal form for spheres in the model manifold.
Resumo:
An experimental study for transient temperature response of low aspect ratio packed beds at high Reynolds numbers for a free stream with varying inlet temperature is presented. The packed bed is used as a compact heat exchanger along with a solid propellant gas-generator, to generate room temperature gases for use in applications such as control actuation and air bottle pressurization. Packed beds of lengths similar to 200 mm and 300 mm were characterized for packing diameter based Reynolds numbers, Re-d ranging from 0.6 x 10(4) to 8.5 x 10(4). The solid packing used in the bed consisted of circle divide 9.5 mm and circle divide 5 mm steel spheres with suitable arrangements to eliminate flow entrance and exit effects. The ratios of packed bed diameter to packing diameter for 9.5 mm and 5 mm sphere packing were similar to 9.5 and 18 respectively, with the average packed bed porosities around 0.4. Gas temperatures were measured at the entry, exit and at three axial locations along centre-line in the packed beds. The solid packing temperature was measured at three axial locations in the packed bed. An average Nusselt number correlation of the form Nu(d) = 3.91Re(d)(05) for Re-d range of 10(4) is proposed. For engineering applications of packed beds such as pebble bed heaters, thermal storage systems, and compact heat exchangers a simple procedure is suggested for calculating unsteady gas temperature at packed bed exit for packing Biot number Bi-d < 0.1. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Let be a noncompact symmetric space of higher rank. We consider two types of averages of functions: one, over level sets of the heat kernel on and the other, over geodesic spheres. We prove injectivity results for functions in which extend the results in Pati and Sitaram (Sankya Ser A 62:419-424, 2000).
Resumo:
A novel composite architecture consisting of a periodic arrangement of closely-spaced spheres of a stiff material embedded in a soft matrix is proposed for extremely high damping and shock absorption capacity. Efficacy of this architecture is demonstrated by compression loading a composite, where multiple steel balls were stacked upon each other in a polydimethylsiloxane (PDMS) matrix, at a low strain-rate of 0.05 s(-1) and a very high strain-rate of >2400 s(-1). The balls slide over each other upon loading, and revert to their original position when the load is removed. Because of imposition of additional strains into the matrix via this reversible, constrained movement of the balls, the composite absorbs significantly larger energy and endures much lesser permanent damage than the monolithic PDMS during both quasi-static and impact loadings. During the impact loading, energy absorbed per unit weight for the composite was, 8 times larger than the monolithic PDMS.
Resumo:
We interpret a normal surface in a (singular) three-manifold in terms of the homology of a chain complex. This allows us to study the relation between normal surfaces and their quadrilateral coordinates. Specifically, we give a proof of an (unpublished) observation independently given by Casson and Rubinstein saying that quadrilaterals determine a normal surface up to vertex linking spheres. We also characterize the quadrilateral coordinates that correspond to a normal surface in a (possibly ideal) triangulation.
Resumo:
The development of the flow of a granular material down an inclined plane starting from rest is studied as a function of the base roughness. In the simulations, the particles are rough frictional spheres interacting via the Hertz contact law. The rough base is made of a random configuration of fixed spheres with diameter different from the flowing particles, and the base roughness is decreased by decreasing the diameter of the base particles. The transition from an ordered to a disordered flowing state at a critical value of the base particle diameter, first reported by Kumaran and Maheshwari Phys. Fluids 24, 053302 (2012)] for particles with the linear contact model, is observed for the Hertzian contact model as well. The flow development for the ordered and disordered flows is very different. During the development of the disordered flow for the rougher base, there is shearing throughout the height. During the development of the ordered flow for the smoother base, there is a shear layer at the bottom and a plug region with no internal shearing above. In the shear layer, the particles are layered and hexagonally ordered in the plane parallel to the base, and the velocity profile is well approximated by Bagnold law. The flow develops in two phases. In the first phase, the thickness of the shear layer and the maximum velocity increase linearly in time till the shear front reaches the top. In the second phase, after the shear layer encompasses the entire flow, there is a much slower increase in the maximum velocity until the steady state is reached. (C) 2013 AIP Publishing LLC.
Resumo:
We study melting of a face-centered crystalline solid consisting of polydisperse Lennard-Jones spheres with Gaussian polydispersity in size. The phase diagram reproduces the existence of a nearly temperature invariant terminal polydispersity (delta(t) similar or equal to 0.11), with no signature of reentrant melting. The absence of reentrant melting can be attributed to the influence of the attractive part of the potential upon melting. We find that at terminal polydispersity the fractional density change approaches zero, which seems to arise from vanishingly small compressibility of the disordered phase. At constant temperature and volume fraction the system undergoes a sharp transition from crystalline solid to the disordered amorphous or fluid state with increasing polydispersity. This has been quantified by second- and third-order rotational invariant bond orientational order, as well as by the average inherent structure energy. The translational order parameter also indicates a similar sharp structural change at delta similar or equal to 0.09 in case of T* = 1.0, phi = 0.58. The free energy calculation further supports the sharp nature of the transition. The third-order rotationally invariant bond order shows that with increasing polydispersity, the local cluster favors a more icosahedral arrangement and the system loses its local crystalline symmetry. Interestingly, the value of structure factor S(k) of the amorphous phase at delta similar or equal to 0.10 (just beyond the solid-liquid transition density at T* = 1) becomes 2.75, which is below the value of 2.85 required for freezing given by the empirical Hansen-Verlet rule of crystallization, well known in the theory of freezing.
Resumo:
We give explicit construction of vertex-transitive tight triangulations of d-manifolds for d >= 2. More explicitly, for each d >= 2, we construct two (d(2) + 5d + 5)-vertex neighborly triangulated d-manifolds whose vertex-links are stacked spheres. The only other non-trivial series of such tight triangulated manifolds currently known is the series of non-simply connected triangulated d-manifolds with 2d + 3 vertices constructed by Kuhnel. The manifolds we construct are strongly minimal. For d >= 3, they are also tight neighborly as defined by Lutz, Sulanke and Swartz. Like Kuhnel complexes, our manifolds are orientable in even dimensions and non-orientable in odd dimensions. (c) 2013 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we construct the fuzzy (finite-dimensional) analogs of the conifold Y-6 and its base X-5. We show that fuzzy X-5 is (the analog of) a principal U(1) bundle over fuzzy spheres S-F(2) x S-F(2) and explicitly construct the associated monopole bundles. In particular, our construction provides an explicit discretization of the spaces T-k,T-k and T-k,T-0.