281 resultados para isospin-dependent QMD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the size-dependent melting of nanowires with finite length based on the thermodynamic as well as liquid drop model. It has been inferred that the length dependency cannot be ignored, unlike the case of infinite length nanowires. To validate the length dependency, we have analyzed a few experimental results reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, Eringen's nonlocal elasticity theory is employed to evaluate the length dependent in-plane stiffness of single-walled carbon nanotubes (SWCNTs). The SWCNT is modeled as an Euler-Bernoulli beam and is analyzed for various boundary conditions to evaluate the length dependent in-plane stiffness. It has been found that the nonlocal scaling parameter has a significant effect on the length dependent in-plane stiffness of SWCNTs. It has been observed that as the nonlocal scale parameter increases the stiffness ratio of SWCNT decreases. In nonlocality, the cantilever SWCNT has high in-plane stiffness as compared to the simply-supported and the clamped cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-time analytical solutions of solid and liquid temperatures and freezing front have been obtained for the outward radially symmetric spherical solidification of a superheated melt. Although results are presented here only for time dependent boundary flux, the method of solution can be used for other kinds of boundary conditions also. Later, the analytical solution has been compared with the numerical solution obtained with the help of a finite difference numerical scheme in which the grid points change with the freezing front position. An efficient method of execution of the numerical scheme has been discussed in details. Graphs have been drawn for the total solidification times and temperature distributions in the solid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report results from a first principles calculation of spatially dependent correlation functions around a magnetic impurity in metals described by the nondegenerate Anderson model. Our computations are based on a combination of perturbative scaling theory and numerical renormalization group methods. Results for the conduction election charge density around the impurity and correlation functions involving the conduction electron and impurity charge and spin densities will be presented. The behavior in various regimes including the mixed valent regime will be explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with a study of an operator split scheme and unsplit scheme for the computation of adiabatic freely propagating one-dimensional premixed flames. The study uses unsteady method for both split and unsplit schemes employing implicit chemistry and explicit diffusion, a combination which is stable and convergent. Solution scheme is not sensitive to the initial starting estimate and provides steady state even with straight line profiles (far from steady state) in small number of time steps. Two systems H2-Air and H2-NO (involving complex nitrogen chemistry) are considered in presentinvestigation. Careful comparison shows that the operator split approach is slightly superior than the unsplit when chemistry becomes complex. Comparison of computational times with those of existing steady and unsteady methods seems to suggest that the method employing implicit-explicit algorithm is very efficient and robust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alternative pulse scheme which simplifies and improves the recently proposed P.E.COSY experiment is suggested for the retention of connected or unconnected transitions in a coupled spin system. An important feature of the proposed pulse scheme is the improved phase characteristics of the diagonal peaks. A comparison of various experiments designed for this purpose, namely COSY-45, E.COSY, P.E.COSY and the present scheme (A.E.COSY), is also presented. The suppression of unconnected transitions and the measurement of scalar coupling constants and their relative signs are illustrated from A.E.COSY spectra of 2,3-dibromopropionic acid and 2-(2-thienyl)pyridine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microscopic expression for the frequency and wave vector dependent dielectric constant of a dense dipolar liquid is derived starting from the linear response theory. The new expression properly takes into account the effects of the translational modes in the polarization relaxation. The longitudinal and the transverse components of the dielectric constant show vastly different behavior at the intermediate values of the wave vector k. We find that the microscopic structure of the dense liquid plays an important role at intermediate wave vectors. The continuum model description of the dielectric constant, although appropriate at very small values of wave vector, breaks down completely at the intermediate values of k. Numerical results for the longitudinal and the transverse dielectric constants are obtained by using the direct correlation function from the mean‐spherical approximation for dipolar hard spheres. We show that our results are consistent with all the limiting expressions known for the dielectric function of matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water gas shift reaction was carried out over noble metal ion substituted nanocrystalline oxide catalysts with different supports. Spectroscopic studies of the catalysts before and after the reaction showed different surface phenomena occurring over the catalysts. Reaction mechanisms were proposed based upon the surface processes and intermediates formed. The dual site mechanism utilizing the oxide ion vacancies for water dissociation and metal ions for CO adsorption was proposed to describe the kinetics of the reaction over the reducible oxides like CeO2. A mechanism based on the interaction of adsorbed CO and the hydroxyl group was proposed for the reaction over ZrO2. A hybrid mechanism based on oxide ion vacancies and surface hydroxyl groups was proposed for the reaction over TiO2. The deactivation of the catalysts was also found to be support dependent. Kinetic models for both activation and deactivation were proposed. (C) 2010 American Institute of Chemical Engineers AIChE J, 56: 2662-2676, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cell-free protein-synthesizing system has been reconstituted using the S-30 fraction or ribosomes and the S-100 fraction from Plasmodium falciparum. Addition of heme in vitro stimulates cell-free protein synthesis strikingly. Chloroquine inhibits the heme-dependent protein synthesis in the parasite lysate. The drug has also been found to inhibit parasite protein synthesis in situ at therapeutic concentrations soon after addition to parasite cultures. Ribosomes as well as the S-100 fraction isolated from such chloroquine-treated cultures are defective in protein synthesis. Addition of hemin plus glucose 6-phosphate or high concentrations of GTP, cAMP, and an active preparation of eIF-2 to the parasite cell-free system restores protein synthesis to a significant extent in chloroquine-treated cultures. Under conditions of inhibition of protein synthesis in situ by chloroquine in the culture, the parasite eukaryotic initiation factor 2-alpha- (eIF-2-alpha) is phosphorylated in the parasite lysate to a greater extent than that observed in the control culture. Addition of hemin in vitro suppresses this phosphorylation. eIF-2-alpha kinase activity is present in the parasite lysate and is not a contaminant derived from the human erythrocytes used to culture the parasite. The heme-chloroquine interactive effects can also be demonstrated with purified eIF-2-alpha kinase from rabbit reticulocyte lysate. It is proposed that chloroquine inhibits heme-dependent protein synthesis in the parasite and this is an early event mediating the growth-inhibitory effects of the drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focuses on the temperature dependent optical band gap changes in the amorphous Ge2Sb2Te5 (GST) films. The behavior of the amorphous GST thin films at low temperatures has been studied. The band gap increment of around 0.2 eV is observed at low temperature (4.2 K) compared to room temperature (300 K). The band gap changes associated with the temperature are completely reversible. The other optical parameters like Urbach energy and Tauc parameter (B-1/2) are studied for different temperatures and discussed. The observed changes in optical band gap (E-g) are fitting to Fan's one phonon approximation. Phonon energy ((h) over bar omega) corresponding to a frequency of 3.59 THz is derived from Fan's approximation, which is close to the reported value of 3.66 THz. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the characteristic Mn2+ d emission color from Mn2+-doped CdS nanocrystals can be tuned over as much as 40 nm, in contrast to what should be expected from such a nearly localized d-d transition. This is achieved surprisingly by a fine-tuning of the host particle diameter from 1.9 to 2.6 nm, thereby changing the overall emission color from red to yellow. Systematic experiments in conjunction with state-of-the-art ab initio calculations with full geometry optimization establish that Mn2+ ions residing at surface/subsurface regions have a distorted tetrahedral coordination resulting in a larger ligand field splitting. Consequently, these near-surface Mn2+ species exhibit a lower Mn2+ d emission energy, compared to those residing at the core of the nanocrystal with an undisturbed tetrahedral coordination. The origin of the tunability of the observed Mn2+ emission is the variation of emission contributions arising from Mn2+ doped at the core, subsurface, and surface of the host. Our findings provide a unique and easy method to identify the location of an emitting Mn2+ ion in the nanocrystal, which would be otherwise very difficult to decipher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular dynamics study of model ions in water is reported. The van der Waals diameter of both the cations and anions is varied. We have carried out two sets of simulations-with and without dispersion interaction-between the ion and water. Self-diffusivity of the ions exhibits an anomalous maximum as a function of the van der Waals diameter for both these sets. This existence of a maximum in self-diffusivity when there is no dispersion interaction between the ion and the water is attributed to the attractive term from electrostatic interactions. Detailed analysis of this effect shows that the solvent shell is more strongly defined in the presence of dispersion interactions. A smaller ion exhibits biexponential decay while a single exponential decay is seen for the ion with maximum diffusivity in the self-part of the intermediate scattering function. The solvent structure around the ion appears to determine much of the dynamics of the ion. Interesting trends are seen in the activation energies and these can be understood in terms of the levitation effect. (C) 2010 American Institute of Physics. doi:10.1063/1.3481656]