96 resultados para intra-step quantum wells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We offer a procedure for evaluating the forces exerted by solitons of weak-coupling field theories on one another. We illustrate the procedure for the kink and the antikink of the two-dimensional φ4 theory. To do this, we construct analytically a static solution of the theory which can be interpreted as a kink and an antikink held a distance R apart. This leads to a definition of the potential energy U(R) for the pair, which is seen to have all the expected features. A corresponding evaluation is also done for U(R) between a soliton and an antisoliton of the sine-Gordon theory. When this U(R) is inserted into a nonrelativistic two-body problem for the pair, it yields a set of bound states and phase shifts. These are found to agree with exact results known for the sine-Gordon field theory in those regions where U(R) is expected to be significant, i.e., when R is large compared to the soliton size. We take this agreement as support that our procedure for defining U(R) yields the correct description of the dynamics of well-separated soliton pairs. An important feature of U(R) is that it seems to give strong intersoliton forces when the coupling constant is small, as distinct from the forces between the ordinary quanta of the theory. We suggest that this is a general feature of a class of theories, and emphasize the possible relevance of this feature to real strongly interacting hadrons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-step synthesis of Ga2O3 nanorods by heating molten gallium in ambient air at high temperatures is presented. The high-temperature synthesis creates oxygen vacancies and incorporates nitrogen from the environment. The oxygen vacancy in Ga2O3 is responsible for the emission in the blue-green region, while nitrogen in Ga2O3 is responsible for red emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of both the velocity and the temperature field have been made in the thermal layer that grows inside a turbulent boundary layer which is subjected to a small step change in surface heat flux. Upstream of the step, the wall heat flux is zero and the velocity boundary layer is nearly self-preserving. The thermal-layer measurements are discussed in the context of a self-preserving analysis for the temperature disturbance which grows underneath a thick external turbulent boundary layer. A logarithmic mean temperature profile is established downstream of the step but the budget for the mean-square temperature fluctuations shows that, in the inner region of the thermal layer, the production and dissipation of temperature fluctuations are not quite equal at the furthest downstream measurement station. The measurements for both the mean and the fluctuating temperature field indicate that the relaxation distance for the thermal layer is quite large, of the order of 1000θ0, where θ0 is the momentum thickness of the boundary layer at the step. Statistics of the thermal-layer interface and conditionally sampled measurements with respect to this interface are presented. Measurements of the temperature intermittency factor indicate that the interface is normally distributed with respect to its mean position. Near the step, the passive heat contaminant acts as an effective marker of the organized turbulence structure that has been observed in the wall region of a boundary layer. Accordingly, conditional averages of Reynolds stresses and heat fluxes measured in the heated part of the flow are considerably larger than the conventional averages when the temperature intermittency factor is small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An easy and convenient one-step procedure for the conversion of alpha,beta-unsaturated carbonyl compounds into their corresponding bromo-enones using NBS-Et3N center dot 3HBr in the presence of potassium carbonate in dichloromethane at 0 degrees C to room temperature under very mild conditions in high yields and significantly shorter times, is reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of a wide range of ferrocene-derived sulfur-linked mono- and disubstituted Michael adducts and conjugates mediated by benzyltriethylammonium tetrathiomolybdate (1) in a tandem process is reported. New route to access acryloylferrocene (4) and 1,1'-diacryloylferrocene (5) is discussed. Conjugation of amino acids to ferrocene is established via their N and C termini and also via side chains employing conjugate addition as key step to furnish mono-and divalent conjugates. This methodology has also been extended to access several ferrocene-carbohydrate conjugates. The electrochemical behavior of some selected ferrocene conjugates was studied by cyclic voltammetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the Einstein's photoemission from III-V, II-VI, IV-VI and HgTe/CdTe quantum well superlattices (QWSLs) with graded interfaces and quantum well effective mass superlattices in the presence of a quantizing magnetic field on the basis of newly formulated dispersion relations in the respective cases. Besides, the same has been studied from the afore-mentioned quantum dot superlattices and it appears that the photoemission oscillates with increasing carrier degeneracy and quantizing magnetic field in different manners. In addition, the photoemission oscillates with film thickness and increasing photon energy in quantum steps together with the fact that the solution of the Boltzmann transport equation will introduce new physical ideas and new experimental findings under different external conditions. The influence of band structure is apparent from all the figures and we have suggested three applications of the analyses of this paper in the fields of superlattices and microstructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homodimeric protein tryptophanyl tRNA synthetase (TrpRS) has a Rossmann fold domain and belongs to the 1c subclass of aminoacyl tRNA synthetases. This enzyme performs the function of acylating the cognate tRNA. This process involves a number of molecules (2 protein subunits, 2 tRNAs and 2 activated Trps) and thus it is difficult to follow the complex steps in this process. Structures of human TrpRS complexed with certain ligands are available. Based on structural and biochemical data, mechanism of activation of Trp has been speculated. However, no structure has yet been solved in the presence of both the tRNA(Trp) and the activated Trp (TrpAMP). In this study, we have modeled the structure of human TrpRS bound to the activated ligand and the cognate tRNA. In addition, we have performed molecular dynamics (MD) simulations on these models as well as other complexes to capture the dynamical process of ligand induced conformational changes. We have analyzed both the local and global changes in the protein conformation from the protein structure network (PSN) of MD snapshots, by a method which was recently developed in our laboratory in the context of the functionally monomeric protein, methionyl tRNA synthetase. From these investigations, we obtain important information such as the ligand induced correlation between different residues of this protein, asymmetric binding of the ligands to the two subunits of the protein as seen in the crystal structure analysis, and the path of communication between the anticodon region and the aminoacylation site. Here we are able to elucidate the role of dimer interface at a level of detail, which has not been captured so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiabatic quantum computation is based on the adiabatic evolution of quantum systems. We analyze a particular class of quantum adiabatic evolutions where either the initial or final Hamiltonian is a one-dimensional projector Hamiltonian on the corresponding ground state. The minimum-energy gap, which governs the time required for a successful evolution, is shown to be proportional to the overlap of the ground states of the initial and final Hamiltonians. We show that such evolutions exhibit a rapid crossover as the ground state changes abruptly near the transition point where the energy gap is minimum. Furthermore, a faster evolution can be obtained by performing a partial adiabatic evolution within a narrow interval around the transition point. These results generalize and quantify earlier works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have obtained the quantum phase diagram of a one-dimensional superconducting quantum dot lattice using the extended Bose-Hubbard model for different commensurabilities. We describe the nature of different quantum phases at the charge degeneracy point. We find a direct phase transition from the Mott insulating phase to the superconducting phase for integer band fillings of Cooper pairs. We predict explicitly the presence of two kinds of repulsive Luttinger liquid phases, besides the charge density wave and superconducting phases for half-integer band fillings. We also predict that extended range interactions are necessary to obtain the correct phase boundary of a one-dimensional interacting Cooper system. We have used the density matrix renormalization group method and Abelian bosonization to study our system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the thermoelectric power under classically large magnetic field (TPM) in ultrathin films (UFs), quantum wires (QWs) of non-linear optical materials on the basis of a newly formulated electron dispersion law considering the anisotropies of the effective electron masses, the spin-orbit splitting constants and the presence of the crystal field splitting within the framework of k.p formalism. The results of quantum confined III-V compounds form the special cases of our generalized analysis. The TPM has also been studied for quantum confined II-VI, stressed materials, bismuth and carbon nanotubes (CNs) on the basis of respective dispersion relations. It is found taking quantum confined CdGeAs2, InAs, InSb, CdS, stressed n-InSb and Bi that the TPM increases with increasing film thickness and decreasing electron statistics exhibiting quantized nature for all types of quantum confinement. The TPM in CNs exhibits oscillatory dependence with increasing carrier concentration and the signature of the entirely different types of quantum systems are evident from the plots. Besides, under certain special conditions, all the results for all the materials gets simplified to the well-known expression of the TPM for non-degenerate materials having parabolic energy bands, leading to the compatibility test. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherent electronic transport through individual molecules is crucially sensitive to quantum interference. We investigate the zero-bias and zero-temperature conductance through pi-conjugated annulene molecules weakly coupled to two leads for different source-drain configurations, finding an important reduction for certain transmission channels and for particular geometries as a consequence of destructive quantum interference between states with definite momenta. When translational symmetry is broken by an external perturbation we find an abrupt increase of the conductance through those channels. Previous studies concentrated on the effect at the Fermi energy, where this effect is very small. By analyzing the effect of symmetry breaking on the main transmission channels we find a much larger response thus leading to the possibility of a larger switching of the conductance through single molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study power dissipation for systems of multiple quantum wires meeting at a junction, in terms of a current splitting matrix (M) describing the junction. We present a unified framework for studying dissipation for wires with either interacting electrons (i.e., Tomonaga-Luttinger liquid wires with Fermi-liquid leads) or noninteracting electrons. We show that for a given matrix M, the eigenvalues of (MM)-M-T characterize the dissipation, and the eigenvectors identify the combinations of bias voltages which need to be applied to the different wires in order to maximize the dissipation associated with the junction. We use our analysis to propose and study some microscopic models of a dissipative junction which employ the edge states of a quantum Hall liquid. These models realize some specific forms of the M matrix whose entries depends on the tunneling amplitudes between the different edges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple effective pyrolysis technique has been developed to synthesize aligned arrays of multi-walled carbon nanotubes (MWCNTs) without using any carrier gas in a single-stage furnace at 700 °C. This technique eliminates nearly the entire complex and expensive machinery associated with other extensively used methods for preparation of CNTs such as chemical vapour deposition (CVD) and pyrolysis. Carbon source materials such as xylene, cyclohexane, camphor, hexane, toluene, pyridine and benzene have been pyrolyzed separately with the catalyst source material ferrocene to obtain aligned arrays of MWCNTs. The synthesized CNTs have been characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. In this technique, the need for the tedious and time-consuming preparation of metal catalysts and continuously fed carbon source material containing carrier gas can be avoided. This method is a single-step process where not many parameters are required to be monitored in order to prepare aligned MWCNTs. For the production of CNTs, the technique has great advantages such as low cost and easy operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a suspended elastic rod under longitudinal compression. The compression can be used to adjust potential energy for transverse displacements from the harmonic to the double well regime. The two minima in potential energy curve describe two possible buckled states. Using transition state theory (TST) we have calculated the rate of conversion from one state to other. If the strain epsilon = 4 epsilon c the simple TST rate diverges. We suggest a method to correct this divergence for quantum calculations. We also find that zero point energy contributions can be quite large so that single mode calculations can lead to large errors in the rate.