85 resultados para in vitro cytogenetical technique


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In designing and developing various biomaterials, the influence of substrate properties, like surface topography, stiffness and wettability on the cell functionality has been investigated widely. However, such study to probe into the influence of the substrate conductivity on cell fate processes is rather limited. In order to address this issue, spark plasma sintered HA-CaTiO3 (Hydroxyapatite-Calcium titanate) has been used as a model material system to showcase the effect of varying conductivity on cell functionality. Being electroactive in nature, mouse myoblast cells (C2C12) were selected as a model cell line in this study. It was inferred that myoblast adhesion/growth systematically increases with substrate conductivity due to CaTiO3 addition to HA. Importantly, parallel arrangement of myoblast cells on higher CaTiO3 containing substrates indicate that self-adjustable cell patterning can be achieved on conductive biomaterials. Furthermore, enhanced myoblast assembly and myotube formation were recorded after 5 days of serum starvation. Overall, the present study conclusively establishes the positive impact of the substrate conductivity towards cell proliferation and differentiation as well as confirms the efficacy of HA-CaTiO3 biocomposites as conductive platforms to facilitate the growth, orientation and fusion of myoblasts, even when cultured in the absence of external electric field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conserved stem domain of influenza virus hemagglutinin (HA) is a target for broadly neutralizing antibodies and a potential vaccine antigen for induction of hetero-subtypic protection. The epitope of 12D1, a previously reported bnAb neutralizing several H3 subtype influenza strains, was putatively mapped to residues 76-106 of the CD-helix, also referred to as long alpha helix (LAH) of the HA stem. A peptide derivative consisting of wt-LAH residues 76-130 conjugated to keyhole limpet hemocyanin was previously shown to confer robust protection in mice against challenge with influenza strains of subtypes H3, H1, and H5 which motivated the present study. We report the design of multiple peptide derivatives of LAH with or without heterologous trimerization sequences and show that several of these are better folded than wt-LAH. However, in contrast to the previous study immunization of mice with wt-LAH resulted in negligible protection against a lethal homologous virus challenge, while some of the newly designed immunogens could confer weak protection. Combined with structural analysis of HA, our data suggest that in addition to LAH, other regions of HA are likely to significantly contribute to the epitope for 12D1 and will be required to elicit robust protection. In addition, a dynamic, flexible conformation of isolated LAH peptide may be required for eliciting a functional anti-viral response. Proteins 2013; 81:1759-1775. (c) 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four dinucleating bis(thiosemicarbazone) ligands and their zinc complexes have been synthesized and characterized by multinuclear NMR (H-1 and C-13), IR, UV-Vis, ESI-MS and fluorescence spectroscopic techniques. Their purity was assessed by elemental analysis. Cytotoxicity was tested against five human cancer cell lines using the sulphorhodamine B (SRB) assay, where one of the complexes, 1,3-bis{biacetyl-2'-(4 `'-N-pyrrolidinylthiosemicarbazone)-3'-(4 `'-N-pyrrolidinylthiosemicarbazone) zinc(II)} propane (6), was found to be quite cytotoxic against MCF-7 (breast cancer) and HepG2 (hepatoma cancer) cell lines, with a potency similar to that of the well known anticancer drug adriamycin. It is evident from the cellular uptake studies that the uptake is same for the active complex 6 and the inactive complex 8 (1,6-bis{biacetyl- 2'-(4 `'-N-pyrrolidinylthiosemicarbazone)-3'-(4 `'-N-pyrrolidinylthiosemicarbazone) zinc(II)} hexane) in MCF-7 and HepG2 cell lines. In vitro DNA binding and cleavage studies revealed that all complexes bind with DNA through electrostatic interaction, and cause no significant cleavage of DNA. (C) 2'13 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of neuroblastoma (N2a) and Schwann cells has been explored on polymer derived carbon substrates of varying micro and nanoscale geometries: resorcinol-formaldehyde (RE) gel derived carbon films and electrospun nanofibrous (similar to 200 nm diameter) mat and SU-8 (a negative photoresist) derived carbon micro-patterns. MTT assay and complementary lactate dehydrogenase (LDH) assay established cytocompatibility of RE derived carbon films and fibers over a period of 6 days in culture. The role of length scale of surface patterns in eliciting lineage-specific adaptive response along, across and on the interspacing between adjacent micropatterns (i.e., ``on'', ``across'' and ``off'') has been assayed. Textural features were found to affect 3',5'-cyclic AMP sodium salt-induced neurite outgrowth, over a wide range of length scales: from similar to 200 nm (carbon fibers) to similar to 60 mu m (carbon patterns). Despite their innate randomness, carbon nanofibers promoted preferential differentiation of N2a cells into neuronal lineage, similar to ordered micro-patterns. Our results, for the first time, conclusively demonstrate the potential of RE-gel and SU-8 derived carbon substrates as nerve tissue engineering platforms for guided proliferation and differentiation of neural cells in vitro. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we report the synthesis, characterization of new series of thiazolo3,2-a]pyrimidine-6-carboxylate derivatives 3a-f and 4a-f. The newly synthesized compounds were screened for in vitro antimicrobial and antiviral activities. The probable mode of action of these active compounds was determined through in silico docking study by docking the receptor methionyl-tRNA synthetase and human inosine-5'-monophosphate dehydrogenase (IMPDH) for antibacterial and antiviral activities, respectively. Among the compounds, 4c exhibited excellent in vitro antimicrobial activity against all tested strains with binding and docking energies -35.6 and -12.4 kcal/mol, respectively. The antiviral studies were carried out for the selected compounds in which 4a exhibited 73.69 and 54.42 % of inhibition of buffalopox and camelpox viruses, respectively. Furthermore, compound 4a showed minimum docking and binding energy along with the maximum hydrogen/hydrophobic interaction with IMPDH. The study contributes towards identification and screening of potential antimicrobial and antiviral agent's against the pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

alpha-Synuclein aggregation is one of the major etiological factors implicated in Parkinson's disease (PD). The prevention of aggregation of alpha-synuclein is a potential therapeutic intervention for preventing PD. The discovery of natural products as alternative drugs to treat PD and related disorders is a current trend. The aqueous extract of Centella asiatica (CA) is traditionally used as a brain tonic and CA is known to improve cognition and memory. There are limited data on the role of CA in modulating amyloid-beta (A beta) levels in the brain and in A beta aggregation. Our study focuses on CA as a modulator of the alpha-synuclein aggregation pattern in vitro. Our investigation is focused on: (i) whether the CA leaf aqueous extract prevents the formation of aggregates from monomers (Phase I: alpha-synuclein + extract co-incubation); (ii) whether the CA aqueous extract prevents the formation of fibrils from oligomers (Phase II: extract added after oligomers formation); and (iii) whether the CA aqueous extract disintegrates the pre-formed fibrils (Phase III: extract added to mature fibrils and incubated for 9 days). The aggregation kinetics are studied using a thioflavin-T assay, circular dichroism, and transmission electron microscopy. The results showed that the CA aqueous extract completely inhibited the alpha-synuclein aggregation from monomers. Further, CA extract significantly inhibited the formation of oligomer to aggregates and favored the disintegration of the preformed fibrils. The study provides an insight in finding new natural products for future PD therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous quaternary bioactive glasses and glass-ceramic with alkali-alkaline-earth oxide were successfully synthesized by using non-ionic block copolymer P123 and evaporation induced self assembly (EISA) process followed by acid treatment assisted sal-gel method. As prepared samples has been characterized for the structural, morphological and textural properties with the various analytical techniques. Glass dissolution/ion release rate in simulated body fluid (SBF) was monitored by inductively coupled plasma (ICP) emission spectroscopy, whereas the formation of apatite phase and its crystallization at the glass and glass-ceramic surface was examined by structural, textural and microscopic probes. The influence of alkaline-earth oxide content on the glass structure followed by textural property has become more evident. The pristine glass samples exhibit a wormhole-like mesoporous structure, whereas the glass-ceramic composition is found to be in three different phases, namely crystalline hydroxyapatite, wollastonite and a residual glassy phase as observed in Cerabone (R) A/W. The existence of calcium orthophosphate phase is closely associated with the pore walls comprising nanometric-sized ``inclusions''. The observed high surface area in conjunction with the structural features provides the possible explanation for experimentally observed enhanced bioactivity through the easy access of ions to the fluid. On the other hand, presence of multiple phases in glass-ceramic sample inhibits or delays the kinetics of apatite formation. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the progress in modern technological research, novel biomaterials are being largely developed for various biomedical applications. Over the past two decades, most of the research focuses on the development of a new generation of bioceramics as substitutes for hard tissue replacement. In reference to their application in different anatomical locations of a patient, newly developed bioceramic materials can potentially induce a toxic/harmful effect to the host tissues. Therefore, prior to clinical testing, relevant biochemical screening assays are to be performed at the cellular and molecular level, to address the issues of biocompatibility and long term performance of the implants. Along with testing strategies in the bulk material toxicity, a detailed evaluation should also be conducted to determine the toxicity of the wear products of the potential bioceramics. This is important as the bioceramics are intended to be implanted in patients with longer life expectancy and notwithstanding, the material will eventually release finer (mostly nanosized) sized debris particles due to continuous wear at articulating surfaces in the hostile corrosive environment of the human body. The wear particulates generated from a biocompatible bioceramic may act in a different way, inducing early/late aseptic loosening at the implant site, resulting in osteolysis and inflammation. Hence, a study on the chronic effects of the wear particulates, in terms of local and systemic toxicity becomes the major criteria in the toxicity evaluation of implantable bioceramics. In this broad perspective, this article summarizes some of the currently used techniques and knowledge in assessing the in vitro and in vivo cytotoxicity and genotoxicity of bioceramic implant materials. It also addresses the need to conduct a broad evaluation before claiming the biocompatibility and clinical feasibility of any new biomaterial. This review also emphasizes some of the case studies based on the experimental designs that are currently followed and its importance in the context of clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 degrees C, which increases to 17 degrees C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 degrees C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work reports the biocompatibility property of injection molded HDPE-HA-Al2O3 hybrid composites. In vitro cytocompatibility results reveal that osteogenic cell viability and bone mineralization are favorably supported in a statistically significant manner on HDPE-20% HA-20% Al2O3 composite, in comparison to HDPE-40 wt.% HA or HDPE-40 wt.% Al2O3. The difference in cytocompatibility property is explained in terms of difference in substrate wettability/surface energy and importantly, both the cell proliferation at 7 days or bone mineralization at 21 days on HDPE-20% HA-20% Al2O3 composite are either comparable or better than sintered HA. The progressive healing of cylindrical femoral bone defects in rabbit animal model was assessed by implantation experiments over 1, 4 and 12 weeks. Based on the histological analysis as well as histomorphometrical evaluation, a better efficacy of HDPE-20% HA-20% Al2O3 over high-density polyethylene (HDPE) for bone regeneration and neobone formation at host bone-implant interface was established. Taken together, the present study unequivocally establishes that despite the presence of 20% Al2O3, HDPE-based hybrid composites are as biocompatible as HA in vitro or better than HDPE in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tobacco-specific nitrosamines (TSNA) have implications in the pathogenesis of various lung diseases and conditions are prevalent even in non-smokers. N-nitrosonornicotine (NNN) and 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are potent pulmonary carcinogens present in tobacco product and are mainly responsible for lung cancer. TSNA reacts with pulmonary surfactants, and alters the surfactant phospholipid. The present study was undertaken to investigate the in vitro exposure of rat lung tissue slices to NNK or NNN and to monitor the phospholipid alteration by P-32]orthophosphate labeling. Phospholipid content decreased significantly in the presence of either NNK or NNN with concentration and time dependent manner. Phosphatidylcholine (PC) is the main phospholipid of lung and significant reduction was observed in PC similar to 61%, followed by phosphatidylglycerol (PG) with 100 mu M of NNK, whereas NNN treated tissues showed a reduction in phosphatidylserine (PS) similar to 60% and PC at 250 mu M concentration. The phospholipase A(2) assays and expression studies reveal that both compounds enhanced phospholipid hydrolysis, thereby reducing the phospholipid content. Collectively, our data demonstrated that both NNK and NNN significantly influenced the surfactant phospholipid level by enhanced phospholipase A(2) activity. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the potential of using novel zoledronic acid (ZOL)-hydroxyapatite (HA) nanoparticle based drug formulation in a rat model of postmenopausal osteoporosis. By a classical adsorption method, nanoparticles of HA loaded with ZOL (HNLZ) drug formulation with a size range of 100-130 nm were prepared. 56 female Wistar rats were ovariectomized (OVX) or sham-operated at 3 months of age. Twelve weeks post surgery, rats were randomized into seven groups and treated with various doses of HNLZ (100, 50 and 25 mu g/kg, intravenous single dose), ZOL (100 mu g/kg, intravenous single dose) and HA nanoparticle (100 mu g/kg, intravenous single dose). Untreated OVX and sham OVX served as controls. After three months treatment period, we evaluated the mechanical properties of the lumbar vertebra and femoral mid-shaft. Femurs were also tested for trabecular microarchitecture. Sensitive biochemical markers of bone formation and bone resorption in serum were also determined. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the therapy with HNLZ drug formulation was more effective than ZOL therapy in OVX rats. Moreover, HNLZ drug therapy preserved the trabecular microarchitecture better than ZOL therapy in OVX rats. Furthermore, the HNLZ drug formulation corrected increase in serum levels of bone-specific alkaline phosphatase, procollagen type I N-terminal propeptide, osteocalcin, tartrate-resistant acid phosphatase 5b and C-telopeptide of type 1 collagen better than ZOL therapy in OVX rats. The results strongly suggest that HNLZ novel drug formulation appears to be more effective approach for treating severe osteoporosis in humans. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

4-(p-X-phenyl)thiosemicarbazone of napthaldehyde {where X = Cl (HL1) and X = Br (HL2)}, thiosemicarbazone of quinoline-2-carbaldehyde (HL3) and 4-(p-fluorophenyl) thiosemicarbazone of salicylaldehyde (H2L4) and their copper(I) {Cu(HL1)(PPh3)(2)Br]center dot CH3CN (1) and Cu(HL2)(PPh3)(2)Cl]center dot DMSO (2)} and copper(II) {((Cu2L2Cl)-Cl-3)(2)(mu-Cl)(2)]center dot 2H(2)O (3) and Cu(L-4)(Py)] (4)} complexes are reported herein. The synthesized ligands and their copper complexes were successfully characterized by elemental analysis, cyclic voltammetry, NMR, ESI-MS, IR and UV-Vis spectroscopy. Molecular structures of all the Cu(I) and Cu(II) complexes have been determined by X-ray crystallography. All the complexes (1-4) were tested for their ability to exhibit DNA-binding and - cleavage activity. The complexes effectively interact with CT-DNA possibly by groove binding mode, with binding constants ranging from 10(4) to 10(5) M-1. Among the complexes, 3 shows the highest chemical (60%) as well as photo-induced (80%) DNA cleavage activity against pUC19 DNA. Finally, the in vitro antiproliferative activity of all the complexes was assayed against the HeLa cell line. Some of the complexes have proved to be as active as the clinical referred drugs, and the greater potency of 3 may be correlated with its aqueous solubility and the presence of the quinonoidal group in the thiosemicarbazone ligand coordinated to the metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present work is to study the effect of electrical process Parameters (duty cycle and frequency) on morphological, structural, and in-vitro corrosion characteristics of oxide films formed on zirconium by plasma electrolytic oxidation in an electrolyte system consisting of 5 g/L of trisodium orthophosphate. The oxide films fabricated on zirconium by systematically varying the duty cycle and frequency are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, scratch resistance, corrosion resistance, apatite forming ability and osteoblast cell adhesion. X-ray diffraction pattern of all the oxide films showed the predominance of m-ZrO2 phase. Dense and uniform films with thickness varying from 9 to 15 mu m and roughness in the range of 0.62 to 1.03 mu m are formed. Porosity of oxide films is found to be increased with an increase infrequency. The water contact angle results demonstrated that the oxide films exhibited similar hydrophilicity to zirconium substrate. All oxide films showed improved corrosion resistance, as indicated by far lower corrosion current density and passive corrosion potential compared to the zirconium substrate in simulated body fluid environment, and among the four different combinations of duty cycle and frequency employed in the present study, the oxide film formed at 95% duty cycle and 50 Hz frequency (HDLF film) showed superior pitting corrosion resistance, which can be attributed to its pore free morpholOgy. Scratch test results showed that the HDLF oxide film adhered firmly to the substrate by developing a notable scratch resistance at 19.5 +/- 1.2.N. Besides the best corrosion resistance and scratch retistance, the HDLF film also showed good apatite forming ability and osteo sarcoma cell adhesion on its surface. The HDLF oxide film on zirconium with superior surface characteristics is believed to be useful for various types of implants in the dental and orthopedic fields. (C) 2015 Elsevier B.V. All rights reserved.