94 resultados para hierarchical clustering
Resumo:
Lack of supervision in clustering algorithms often leads to clusters that are not useful or interesting to human reviewers. We investigate if supervision can be automatically transferred for clustering a target task, by providing a relevant supervised partitioning of a dataset from a different source task. The target clustering is made more meaningful for the human user by trading-off intrinsic clustering goodness on the target task for alignment with relevant supervised partitions in the source task, wherever possible. We propose a cross-guided clustering algorithm that builds on traditional k-means by aligning the target clusters with source partitions. The alignment process makes use of a cross-task similarity measure that discovers hidden relationships across tasks. When the source and target tasks correspond to different domains with potentially different vocabularies, we propose a projection approach using pivot vocabularies for the cross-domain similarity measure. Using multiple real-world and synthetic datasets, we show that our approach improves clustering accuracy significantly over traditional k-means and state-of-the-art semi-supervised clustering baselines, over a wide range of data characteristics and parameter settings.
Resumo:
We report a simple, template free and low-temperature hydrothermal reaction pathway using Cu(II) - thiourea complex (prepared in situ from copper (II) chloride and thiourea as precursors) and citric acid as complexing agent to synthesize two-dimensional hierarchical nano-structures of covellite (CuS). The product was characterized with the help of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-ray spectroscopy (EDAX) and X-ray photoelectron spectroscopy (XPS). The concentration of citric acid in the hydrothermal precursor solution was seen to have a profound effect on the nanostructure of the product generated. Based on the outcoming product nano-architecture at different concentration of the ionic surfactant in the hydrothermal precursor solution a possible mechanism suited for reaction and further nucleation is also discussed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we approach the classical problem of clustering using solution concepts from cooperative game theory such as Nucleolus and Shapley value. We formulate the problem of clustering as a characteristic form game and develop a novel algorithm DRAC (Density-Restricted Agglomerative Clustering) for clustering. With extensive experimentation on standard data sets, we compare the performance of DRAC with that of well known algorithms. We show an interesting result that four prominent solution concepts, Nucleolus, Shapley value, Gately point and \tau-value coincide for the defined characteristic form game. This vindicates the choice of the characteristic function of the clustering game and also provides strong intuitive foundation for our approach.
Resumo:
In this paper, a comparative study is carried using three nature-inspired algorithms namely Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Cuckoo Search (CS) on clustering problem. Cuckoo search is used with levy flight. The heavy-tail property of levy flight is exploited here. These algorithms are used on three standard benchmark datasets and one real-time multi-spectral satellite dataset. The results are tabulated and analysed using various techniques. Finally we conclude that under the given set of parameters, cuckoo search works efficiently for majority of the dataset and levy flight plays an important role.
Resumo:
This paper illustrates the application of a new technique, based on Support Vector Clustering (SVC) for the direct identification of coherent synchronous generators in a large interconnected Multi-Machine Power Systems. The clustering is based on coherency measures, obtained from the time domain responses of the generators following system disturbances. The proposed clustering algorithm could be integrated into a wide-area measurement system that enables fast identification of coherent clusters of generators for the construction of dynamic equivalent models. An application of the proposed method is demonstrated on a practical 15 generators 72-bus system, an equivalent of Indian Southern grid in an attempt to show the effectiveness of this clustering approach. The effects of short circuit fault locations on coherency are also investigated.
Resumo:
We address the problem of detecting cells in biological images. The problem is important in many automated image analysis applications. We identify the problem as one of clustering and formulate it within the framework of robust estimation using loss functions. We show how suitable loss functions may be chosen based on a priori knowledge of the noise distribution. Specifically, in the context of biological images, since the measurement noise is not Gaussian, quadratic loss functions yield suboptimal results. We show that by incorporating the Huber loss function, cells can be detected robustly and accurately. To initialize the algorithm, we also propose a seed selection approach. Simulation results show that Huber loss exhibits better performance compared with some standard loss functions. We also provide experimental results on confocal images of yeast cells. The proposed technique exhibits good detection performance even when the signal-to-noise ratio is low.
Resumo:
When document corpus is very large, we often need to reduce the number of features. But it is not possible to apply conventional Non-negative Matrix Factorization(NMF) on billion by million matrix as the matrix may not fit in memory. Here we present novel Online NMF algorithm. Using Online NMF, we reduced original high-dimensional space to low-dimensional space. Then we cluster all the documents in reduced dimension using k-means algorithm. We experimentally show that by processing small subsets of documents we will be able to achieve good performance. The method proposed outperforms existing algorithms.
Resumo:
The role of crystallite size and clustering in influencing the stability of the structures of a large tetragonality ferroelectric system 0.6BiFeO(3)-0.4PbTiO(3) was investigated. The system exhibits cubic phase for a crystallite size similar to 25 nm, three times larger than the critical size reported for one of its end member PbTiO3. With increased degree of clustering for the same average crystallite size, partial stabilization of the ferroelectric tetragonal phase takes place. The results suggest that clustering helps in reducing the depolarization energy without the need for increasing the crystallite size of free particles.
Resumo:
Clustering has been the most popular method for data exploration. Clustering is partitioning the data set into sub-partitions based on some measures say the distance measure, each partition has its own significant information. There are a number of algorithms explored for this purpose, one such algorithm is the Particle Swarm Optimization(PSO) which is a population based heuristic search technique derived from swarm intelligence. In this paper we present an improved version of the Particle Swarm Optimization where, each feature of the data set is given significance accordingly by adding some random weights, which also minimizes the distortions in the dataset if any. The performance of the above proposed algorithm is evaluated using some benchmark datasets from Machine Learning Repository. The experimental results shows that our proposed methodology performs significantly better than the previously performed experiments.
Resumo:
Chebyshev-inequality-based convex relaxations of Chance-Constrained Programs (CCPs) are shown to be useful for learning classifiers on massive datasets. In particular, an algorithm that integrates efficient clustering procedures and CCP approaches for computing classifiers on large datasets is proposed. The key idea is to identify high density regions or clusters from individual class conditional densities and then use a CCP formulation to learn a classifier on the clusters. The CCP formulation ensures that most of the data points in a cluster are correctly classified by employing a Chebyshev-inequality-based convex relaxation. This relaxation is heavily dependent on the second-order statistics. However, this formulation and in general such relaxations that depend on the second-order moments are susceptible to moment estimation errors. One of the contributions of the paper is to propose several formulations that are robust to such errors. In particular a generic way of making such formulations robust to moment estimation errors is illustrated using two novel confidence sets. An important contribution is to show that when either of the confidence sets is employed, for the special case of a spherical normal distribution of clusters, the robust variant of the formulation can be posed as a second-order cone program. Empirical results show that the robust formulations achieve accuracies comparable to that with true moments, even when moment estimates are erroneous. Results also illustrate the benefits of employing the proposed methodology for robust classification of large-scale datasets.
Resumo:
Vertically aligned zinc oxide (ZnO) hierarchical nanostructures were developed by homo-epitaxial growth method using nickel as catalyst, and their physical properties were investigated and reported. ZnO nanorods grown by vapor-liquid-solid method are single crystalline and grown along the < 001 > direction, whereas the second order nano-branches are grown along the < 110 > direction. The homo-epitaxial relation between nano-branches (ZnOb) and ZnO cores (ZnOc) is found to be (110)ZnOb//(110)ZnOc and (002)ZnOb//(002)ZnOc. The simple and hierarchical nanostructures exhibited ultra-violet emission peak at 380 nm as near band edge emission of ZnO and have very weak defects related peak at 492 nm. (C) 2013 The Electrochemical Society. All rights reserved.
Resumo:
In this paper we give a compositional (or inductive) construction of monitoring automata for LTL formulas. Our construction is similar in spirit to the compositional construction of Kesten and Pnueli [5]. We introduce the notion of hierarchical Büchi automata and phrase our constructions in the framework of these automata. We give detailed constructions for all the principal LTL operators including past operators, along with proofs of correctness of the constructions.
Resumo:
Transductive SVM (TSVM) is a well known semi-supervised large margin learning method for binary text classification. In this paper we extend this method to multi-class and hierarchical classification problems. We point out that the determination of labels of unlabeled examples with fixed classifier weights is a linear programming problem. We devise an efficient technique for solving it. The method is applicable to general loss functions. We demonstrate the value of the new method using large margin loss on a number of multi-class and hierarchical classification datasets. For maxent loss we show empirically that our method is better than expectation regularization/constraint and posterior regularization methods, and competitive with the version of entropy regularization method which uses label constraints.
Resumo:
Learning from Positive and Unlabelled examples (LPU) has emerged as an important problem in data mining and information retrieval applications. Existing techniques are not ideally suited for real world scenarios where the datasets are linearly inseparable, as they either build linear classifiers or the non-linear classifiers fail to achieve the desired performance. In this work, we propose to extend maximum margin clustering ideas and present an iterative procedure to design a non-linear classifier for LPU. In particular, we build a least squares support vector classifier, suitable for handling this problem due to symmetry of its loss function. Further, we present techniques for appropriately initializing the labels of unlabelled examples and for enforcing the ratio of positive to negative examples while obtaining these labels. Experiments on real-world datasets demonstrate that the non-linear classifier designed using the proposed approach gives significantly better generalization performance than the existing relevant approaches for LPU.
Resumo:
Data clustering is a common technique for statistical data analysis, which is used in many fields, including machine learning and data mining. Clustering is grouping of a data set or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait according to some defined distance measure. In this paper we present the genetically improved version of particle swarm optimization algorithm which is a population based heuristic search technique derived from the analysis of the particle swarm intelligence and the concepts of genetic algorithms (GA). The algorithm combines the concepts of PSO such as velocity and position update rules together with the concepts of GA such as selection, crossover and mutation. The performance of the above proposed algorithm is evaluated using some benchmark datasets from Machine Learning Repository. The performance of our method is better than k-means and PSO algorithm.