70 resultados para hemispheric dominance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A(2)* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an experimental procedure to determine the acoustic and vibration behavior of an inverter-fed induction motor based on measurements of the current spectrum, acoustic noise spectrum, overall noise in dB, and overall A-weighted noise in dBA. Measurements are carried out on space-vector modulated 8-hp and 3-hp induction motor drives over a range of carrier frequencies at different modulation frequencies. The experimental data help to distinguish between regions of high and low acoustic noise levels. The measurements also bring out the impact of carrier frequency on the acoustic noise. The sensitivity of the overall noise to carrier frequency is indicative of the relative dominance of the high-frequency electromagnetic noise over mechanical and aerodynamic components of noise. Based on the measured current and acoustic noise spectra, the ratio of dynamic deflection on the stator surface to the product of fundamental and harmonic current amplitudes is obtained at each operating point. The variation of this ratio of deflection to current product with carrier frequency indicates the resonant frequency clearly and also gives a measure of the amplification of vibration at frequencies close to the resonant frequency. This ratio is useful to predict the magnitude of acoustic noise corresponding to significant time-harmonic currents flowing in the stator winding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lightning strike to instrumented and communication towers can be a source of electromagnetic disturbance to the system connected. Long cables running on these towers can get significant induction to their sheath/core, which would then couple to the connected equipments. For a quantitative analysis of the situation, suitable theoretical analysis is necessary. Due to the dominance of the transverse magnetic mode during the fast rising portion of the stroke current, which is the period of significant induction, a full wave solution based on Maxwell's equations is necessary. Owing to the large geometric aspect ratio of tower lattice elements and for feasibility of a numerical solution, the thin-wire formulation for the electric field integral equation is generally adopted. However, the classical thin-wire formulation is not set for handling non-cylindrical conductors like tower lattice elements and the proximity of other conductors. The present work investigates further into a recently proposed method for handling such a situation and optimizes the numerical solution approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An organic solid, 4,7-dibromo-5,6-dinitro-2,1,3-benzothiadiazole, has been designed to serve as an illustrative example to quantitatively evaluate the relative merits of halogen and chalcogen bonding in terms of charge density features. The compound displays two polymorphic modifications, one crystallizing in a non-centrosymmetric space group (Z' = 1) and the other in a centrosymmetric space group with two molecules in the asymmetric unit (Z' = 2). Topological analysis based on QTAIM clearly brings out the dominance of the chalcogen bond over the halogen bond along with an indication that halogen bonds are more directional compared to chalcogen bonds. The cohesive energies calculated with the absence of both strong and weak hydrogen bonds as well as stacking interaction are indicative of the stabilities associated with the polymorphic forms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, the dry sliding wear behavior of rheocast A356 Al alloys, cast using a cooling slope, as well as gravity cast A356 Al alloy have been investigated at a low sliding speed of 1ms(-1), against a hardened EN 31 disk at different loads. The wear mechanism involves microcutting-abrasion and adhesion at lower load for all of the alloys studied in the present work. On the other hand, at higher load, mainly adhesive wear along with oxide formation is observed for gravity cast A356 Al alloy and rheocast A356 Al alloy, cast using a 45 degrees slope angle. Unlike other alloys, 60 degrees slope rheocast A356 Al alloy is found to undergo mainly abrasive wear at higher load. Accordingly, the rheocast sample, cast using a 60 degrees cooling slope, exhibits a remarkably lower wear rate at higher load compared to gravity cast and 45 degrees slope rheocast samples. This is attributed to the dominance of abrasive wear at higher load in the case of rheocast A356 Al alloy cast using a 60 degrees slope. The presence of finer and more spherical primary Al grain morphology is found to resist adhesive wear in case of 60 degrees cooling slope processed rheocast alloy and thereby delay the transition of the wear regime from normal wear to severe wear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the combustion characteristics of fuel droplets laden with energetic nanoparticles (NP) is pivotal for lowering ignition delay, reducing pollutant emissions and increasing the combustion efficiency in next generation combustors. In this study, first we elucidate the feedback coupling between two key interacting mechanisms, namely, secondary atomization and particle agglomeration; that govern the effective mass fraction of NPs within the droplet. Second, we show how the initial NP concentration modulates their relative dominance leading to a masterslave configuration. Secondary atomization of novel nanofuels is a crucial process since it enables an effective transport of dispersed NPs to the flame (a pre-requisite condition for NPs to burn). Contrarily, NP agglomeration at the droplet surface leads to shell formation thereby retaining NPs inside the droplet. In particular, we show that at dense concentrations shell formation (master process) dominates over secondary atomization (slave) while at dilute particle loading it is the high frequency bubble ejections (master) that disrupt shell formation (slave) through its rupture and continuous outflux of NPs. This results in distinct combustion residues at dilute and dense concentrations, thereby providing a method of manufacturing flame synthesized microstructures with distinct morphologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Series of oedometer tests and micro-analytical studies (XRD, SEM and EDAX) have been carried out to investigate the influence of varying gypsum content on swell, compressibility and permeability of lime treated montmorillonitic soil after curing for different period. Immediate swell is observed on inundation of compacted samples with water and continuously increased with gypsum content. However, changes in swell are found to be marginal with curing. This is attributed to the formation and growth of ettringite crystals by ionic reactions of aluminum calcium-sulfate in the presence of water which is confirmed through detailed micro-analysis. The higher swell in uncured specimens and gradual reduction in swell with increase in curing periods are due to relative dominance of formation and growth of ettringite and cementitious compounds, respectively. Also, the ionic reaction products are found to bear a significant influence on the compressibility and permeability behavior. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-year observations from the network of ground-based observatories (ARFINET), established under the project `Aerosol Radiative Forcing over India' (ARFI) of Indian Space Research Organization and space-borne lidar `Cloud Aerosol Lidar with Orthogonal Polarization' (CALIOP) along with simulations from the chemical transport model `Goddard Chemistry Aerosol Radiation and Transport' (GOCART), are used to characterize the vertical distribution of atmospheric aerosols over the Indian landmass and its spatial structure. While the vertical distribution of aerosol extinction showed higher values close to the surface followed by a gradual decrease at increasing altitudes, a strong meridional increase is observed in the vertical spread of aerosols across the Indian region in all seasons. It emerges that the strong thermal convections cause deepening of the atmospheric boundary layer, which although reduces the aerosol concentration at lower altitudes, enhances the concentration at higher elevations by pumping up more aerosols from below and also helping the lofted particles to reach higher levels in the atmosphere. Aerosol depolarization ratios derived from CALIPSO as well as the GOCART simulations indicate the dominance of mineral dust aerosols during spring and summer and anthropogenic aerosols in winter. During summer monsoon, though heavy rainfall associated with the Indian monsoon removes large amounts of aerosols, the prevailing southwesterly winds advect more marine aerosols over to landmass (from the adjoining oceans) leading to increase in aerosol loading at lower altitudes than in spring. During spring and summer months, aerosol loading is found to be significant, even at altitudes as high as 4 km, and this is proposed to have significant impacts on the regional climate systems such as Indian monsoon. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the pressing need to meet an ever-increasing energy demand, the combustion systems utilizing fossil fuels have been the major contributors to carbon footprint. As the combustion of conventional energy resources continue to produce significant Green House gas (GHG) emissions, there is a strong emphasis to either upgrade or find an energy-efficient eco-friendly alternative to the traditional hydrocarbon fuels. With recent developments in nanotechnology, the ability to manufacture materials with custom tailored properties at nanoscale has led to the discovery of a new class of high energy density fuels containing reactive metallic nanoparticles (NPs). Due to the high reactive interfacial area and enhanced thermal and mass transport properties of nanomaterials, the high heat of formation of these metallic fuels can now be released rapidly, thereby saving on specific fuel consumption and hence reducing GHG emissions. In order to examine the efficacy of nanofuels in energetic formulations, it is imperative to first study their combustion characteristics at the droplet scale that form the fundamental building block for any combustion system utilizing liquid fuel spray. During combustion of such multiphase, multicomponent droplets, the phenomenon of diffusional entrapment of high volatility species leads to its explosive boiling (at the superheat limit) thereby leading to an intense internal pressure build-up. This pressure upsurge causes droplet fragmentation either in form of a microexplosion or droplet puffing followed by atomization (with formation of daughter droplets) featuring disruptive burning. Both these atomization modes represent primary mechanisms for extracting the high oxidation energies of metal NP additives by exposing them to the droplet flame (with daughter droplets acting as carriers of NPs). Atomization also serves as a natural mechanism for uniform distribution and mixing of the base fuel and enhancing burning rates (due to increase in specific surface area through formation of smaller daughter droplets). However, the efficiency of atomization depends on the thermo-physical properties of the base fuel, NP concentration and type. For instance, at dense loading NP agglomeration may lead to shell formation which would sustain the pressure upsurge and hence suppress atomization thereby reducing droplet gasification rate. Contrarily, the NPs may act as nucleation sites and aid boiling and the radiation absorption by NPs (from the flame) may lead to enhanced burning rates. Thus, nanoadditives may have opposing effects on the burning rate depending on the relative dominance of processes occurring at the droplet scale. The fundamental idea in this study is to: First, review different thermo-physical processes that occur globally at the droplet and sub-droplet scale such as surface regression, shell formation due to NP agglomeration, internal boiling, atomization/NP transport to flame zone and flame acoustic interaction that occur at the droplet scale and second, understand how their interaction changes as a function of droplet size, NP type, NP concentration and the type of base fuel. This understanding is crucial for obtaining phenomenological insights on the combustion behavior of novel nanofluid fuels that show great promise for becoming the next-generation fuels. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, research in copper-based quaternary chalcogenide materials has been found to be interesting for the study of thermoelectric properties because of their low thermal conductivity due to complex crystal structures. In the present work, stoichiometric quaternary chalcogenide compounds Cu2CdSn1-xInxSe4(x = 0, 0.025, 0.05, 0.1) were prepared by solid state synthesis. The powder X-ray diffraction patterns of all the samples showed a tetragonal crystal structure with the space group I (4) over bar 2m of the main phase. In addition to this phase, a small amount of impurity phase CdSe was present in all the samples, as confirmed by Rietveld analysis. The elemental composition of all the samples characterized by an Electron Probe Micro Analyzer showed a slight deviation from the nominal composition. The transport properties were measured in the temperature range of 350 K-723 K. The positive Seebeck coefficient of all the compounds indicate that the majority carriers are holes. The Seebeck coefficient and electrical resistivity did not follow the trend in the expected manner with In doping, which could be influenced by the presence of the impurity phases. The total thermal conductivity of all the samples was dominated by the lattice thermal conductivity, while the electronic contribution was very small due to the low carrier contribution. A lattice thermal conductivity decrease with an increase of temperature indicates the dominance of phonon-phonon scattering at higher temperatures. The maximum figure of merit zT = 0.30 at 723 K was obtained for the compound Cu2CdSn0.9In0.1Se4. (C) 2016 Elsevier Ltd. All rights reserved.