108 resultados para guava Paluma cv.
Resumo:
Genetic transformation systems have been established for Brassica nigra (cv. IC 257) by using an Agrobacterium binary vector as well as by direct DNA uptake of a plasmid vector. Both the type of vectors carried nptII gene and gus gene. For Agrobacterium mediated transformation, hypocotyl tissue explants were used, and up to 33% of the explants produced calli on selection medium. All of these expressed B-glucuronidase gene on histochemical staining. Protoplasts isolated from hypocotyl tissues of seedlings could be transformed with a plasmid vector by FEG mediated uptake of vector DNA. A number of fertile kanamycin resistant plants were obtained using both the methods, and their transformed nature was confirmed by Southern blot analysis and histochemical staining for GUS. Backcrossed and selfed progenies of these transformed plants showed the presence of npt and gus genes.
Resumo:
Root absorption and translocation of [C-14]fluchloralin were determined in groundnut (Arachis hypogaea L.) cv. TMV-2 and pigweed (Amaranthus viridis L.) grown in nutrient solution culture under greenhouse conditions. Root-applied fluchloralin toxicity to groundnut and pigweed was also examined. A growth reduction of 50% occurred in groundnut that received fluchloralin at a concentration of 9.0 mum. Root absorption was similar for both groundnut and pigweed at one day after application (DAA), but groundnut absorbed about twice the amount of fluchloralin during 4 and 8 days of continuous application, compared with pigweed. Groundnut absorbed 25% of the total applied fluchloralin after 8 days. Translocation to leaves from treated roots was low and roots of groundnut contained 80% of the total absorbed C-14, 8 DAA. Contrary to the observations in groundnut, transport from the roots and leaves following root application in pigweed was rapid: 1 and 8 DAA, leaves of pigweed contained 45 and 70% of the total absorbed C-14, respectively. Different patterns of fluchloralin metabolism were observed in pigweed and groundnut. Pigweed metabolized most of the fluchloralin absorbed by roots. The fluchloralin tolerance of pigweed could partially be accounted for by absorption, translocation and metabolism.
Resumo:
The chloroplastic isoform of glutamine synthetase (GS(2), EC 6.3.1.2) from normal and water stressed safflower (Carthamus tinctorius L. cv.A-300) leaves has been purified to apparent electrophoretic homogeneity by a procedure involving anion-exchange, hydrophobic and size-exclusion chromatography followed by electroelution of the protein from preparative polyacrylamide gels. The observed molecular weight of the native protein varied from 305-330 kDa depending on the sizing column employed. The native protein is composed of 44 kDa subunits. Under conditions of saturating ammonium and at ATP levels of 0.1-10 mM, double-reciprocal plots with respect to glutamate are biphasic and concave downward at high concentrations of the varied substrate for normal enzyme but are linear for enzyme from water-stressed plants. Under subsaturating ATP levels, K-Glu is over 18-fold lower for enzyme from stressed leaves. The K-m, (ATP) varies with Mg2+ levels in the assay mixture. Double-reciprocal plots of initial velocity with respect to ATP at changing fixed levels of NH4+ are linear for normal enzyme but are curved upwards for enzyme from stressed leaves. Initial velocity data of 1/v vs. 1/ammonium for the enzyme from both the sources are non-linear (curved upwards) when ATP is saturating. At subsaturating ATP levels, the data are linear for normal enzyme but are still non-linear for the enzyme from stressed leaves. The results obtained suggest positively cooperative binding of NH4+ A V-max(/2) value of 3.6 mM for Mg2+ was obtained at 5 mM ATP. The isoelectric point of the native protein from normal and stressed leaves was determined to be, respectively, 5.6 and 6.1. The mixed competitive and competitive inhibitors, methionine sulfoximine and ADP and K-i values of 0.086 mM (0.017 for the enzyme from stressed leaves) and 2.15 mM (1.70 for the enzyme from stressed leaves), respectively. Enzyme from stressed leaves is not inhibited by 5 mM proline. The observed kinetic constants of GS(2) from normal and water stressed safflower seedlings are discussed in relation to the known water-stress tolerance of this crop plant.
Resumo:
The total synthesis of the unusual sesquiterpene (+/-)-myltayl-4(12)-ene 3 starting from the readily available cyclogeraniol 5 and the single-crystal X-ray structure of the 4-nitrobenzoate 12 of the noralcohol 11 are described.
Resumo:
Estimates of interfacial friction angle (delta) are necessary for the design of retaining structures and deep foundations, Recommendations in the literature regarding delta values are often contradictory and are therefore not easy to apply in geotechnical design, A critical examination of past studies in terms of data generation techniques used and conclusions drawn indicates that two distinctly different test procedures/techniques have been evolved. The interfacial situation in practice can also be categorized into two broad types, These two types of interface problems in geotechnical engineering are (a) the structure is placed on the free surface of prepared fill (type A situation) and (b) the fill is placed against the material surface which functions as a confined boundary (type B situation), The friction angle delta depends on the surface roughness of the construction material, But in the type A situation, it is independent of density and its limiting maximum value (delta(lim)) is the critical state friction angle phi(cv). In the type B situation, it is dependent on density of the fill and its limiting maximum value is the peak angle of internal friction phi(p) of the fill.
Resumo:
Flaviviruses generate their structural and nonstructural proteins by proteolytic processing of a single large polyprotein precursor. These proteolytic events are brought about both by host cell signalase and a virally encoded protease. The virally encoded proteolytic activity has been shown to reside within the nonstructural protein 3 (NS3) and requires the product of the nonstructural 2b (NS2b) gene. In order to obtain sufficient quantities of pure NS2b and NS3 proteins for kinetic analysis, we have expressed both these proteins in recombinant systems as fusions to glutathione S-transferase (GST). The fusion constructs were driven by the strong bacteriophage T7 promoter. Transfection of these constructs into the African green monkey kidney cell line CV-1 previously infected with a recombinant vaccinia virus expressing the T7 RNA polymerase resulted in synthesis of the fusion proteins. Both the fusion proteins could be purified to homogeneity in a single step using a glutathione agarose affinity matrix.
Resumo:
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Resumo:
Complete plants were regenerated from in vitro cultured immature cotyledon segments of groundnut (Arachis hypogaea L. cv. TMV-7) by organogenesis. Callus cultures were best Initiated from immature cotyledon segments on MS (Murashige and Skoog) salts containing B5 vitamins supplemented with indole-3-acetic acid (IAA) and alpha -naphthalene acetic acid (NAA; 4.0 mg L-1) and kinetin (KIN; 0.5 L-1). Calluses were transferred to a medium containing KIN (2.0 mg L-1) and IAA and NAA (0.5 mg L-1) for shoot Initiation. The regenerated shoots were transferred to a medium containing Indole-3-butyric acid (IBA; 2.0 mg L-1) and KIN (0.2 mg L-1) for developing roots. In vitro produced plantlets developed sucessfully, matured, and set seed. The protein profiles [sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE)] of callus, callus with shoot, and callus with shoot and root showed differences.
Resumo:
Long-term deterioration in the performance of PEFCs is attributed largely to reduction in active area of the platinum catalyst at cathode, usually caused by carbon-support corrosion. It is found that the use of graphitic carbon as cathode-catalyst support enhances its long-term stability in relation to non-graphitic carbon. This is because graphitic-carbon-supported- Pt (Pt/GrC) cathodes exhibit higher resistance to carbon corrosion in-relation to non-graphitic-carbon-supported- Pt (Pt/Non-GrC) cathodes in PEFCs during accelerated stress test (AST) as evidenced by chronoamperometry and carbon dioxide studies. The corresponding change in electrochemical surface area (ESA), cell performance and charge-transfer resistance are monitored through cyclic voltammetry (CV), cell polarisation and impedance measurements, respectively. The degradation in performance of PEFC with Pt/GrC cathode is found to be around 10% after 70 h of AST as against 77% for Pt/Non-GrC cathode. It is noteworthy that Pt/GrC cathodes can withstand even up to 100 h of AST with nominal effect on their performance. Xray diffraction (XRD), Raman spectroscopy, transmission electron microscopy and cross-sectional field-emission scanning electron microscopy (FE-SEM) studies before and after AST suggest lesser deformation in catalyst layer and catalyst particles for Pt/GrC cathodes in relation to Pt/Non-GrC cathodes, reflecting that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt-particles.
Resumo:
Details of the first total syntheses of the sesquiterpenes myltayl-8(12)-ene and 6-epijunicedran-8-ol are described. The aldehyde 13, obtained by Claisen rearrangement of cyclogeraniol, was transformed into the dienones 12 and 18. Boron trifluoride-diethyl ether mediated cyclization and rearrangement transformed the dienones 12 and 18 into the tricyclic ketones 16 and 17, efficiently creating three and four contiguous quaternary carbon atoms, respectively. Wittig methylenation of 16 furnished (+/-)-myltayl-8(12)-ene (11), whereas reduction of the ketone 17 furnished (+/-)-6-epijunicedranol (23).
Resumo:
We have synthesized four different types of dimesogenic compounds involving the cholesteryl moiety as one of the mesogenic constituents, and have investigated their liquid crystalline properties. The molecular structures of these dimesogens have been confirmed by spectral analyses; they exhibit a rich polymorphism, as revealed by optical microscopic and differential scanning calorimetric observations. The studies show that the mesomorphic behaviour is sensitive to the nature of the terminal alkyl chains, and to the structure of the 'second mesogen' that is attached to the cholesteryl unit through a polymethylene spacer.
Resumo:
The effect of NaCl on total peroxidase activity, induction of isoperoxidases and lipid peroxidation in 5-day-old seedlings of two contrasting genotypes of Setaria italica L. (Prasad, a salt tolerant cultivar and Lepakshi, a salt susceptible cultivar), was studied. Total peroxidase activity increased under NaCl salinity and the degree of elevation in the activity was salt concentration dependent. Nevertheless, a greater activity was recorded in the tolerant cultivar (cv Prasad) compared to the susceptible (cv Lepakshi) one in all days of sampling. Further, the pattern of isoperoxidases was modified during stress conditions as evident from the electrophoregrams. Although, five acidic isoforms were detected in both cultivars, differences were found between the cultivars. Furthermore, it was observed that acidic isoperoxidases were strongly expressed and an acidic isoperoxidase, A(3p) (27 kDa) is specifically found in the tolerant cultivar (cv Prasad) under NaCl stress. This isoform was partially purified and found to be thermostable with pr 5.5 and the optimum pH 7.4. A close correlation exists between the rate of lipid peroxidation in terms of malonaldehyde (MDA) content and total peroxidase activity per gram fresh weight with salt tolerance of the two cultivars. The tolerant cultivar (cv Prasad) had low MDA content and high total peroxidase activity than the susceptible variety (cv Lepakshi) during salinity stress. (C) 1999 Published by Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Electrochemical redox reactions of ferrous/ferric (Fe2+/Fe3+) and hydroquinone/quinone (H(2)Q/Q) were studied on Pt and polyaniline (PANI)-deposited Pt electrodes in 0.5 M H2SO4-supporting electrolyte by cyclic voltammetry and ac impedance spectroscopy. A comparison of the experimental data obtained with the Pt and PANI/Pt electrodes suggested that the reactions were catalyzed by the PANI. Based on a relative increase in peak currents of cyclic voltammograms, catalytic efficiency (gamma(cv)) of the PANI was defined. There was an increase in gamma(cv) with an increase of scan rate and a decrease of concentration of Fe2+/Fe3+ or H(2)Q. The complex plane impedance spectrum of the electrode consisted of a semicircle in high frequency range and a linear spike in low frequency range. The exchange current density (i(0)) calculated using the semicircle part of the impedance showed Butler-Volmer kinetics with respect to concentration dependence. From a relative increase of i(0) on the PANI/Pt electrode, catalytic efficiency (gamma(eis)) was evaluated. (C) 2002 Elsevier Science B.V. All rights reserved.