99 resultados para graph entropy
Resumo:
Precise pointer analysis is a problem of interest to both the compiler and the program verification community. Flow-sensitivity is an important dimension of pointer analysis that affects the precision of the final result computed. Scaling flow-sensitive pointer analysis to millions of lines of code is a major challenge. Recently, staged flow-sensitive pointer analysis has been proposed, which exploits a sparse representation of program code created by staged analysis. In this paper we formulate the staged flow-sensitive pointer analysis as a graph-rewriting problem. Graph-rewriting has already been used for flow-insensitive analysis. However, formulating flow-sensitive pointer analysis as a graph-rewriting problem adds additional challenges due to the nature of flow-sensitivity. We implement our parallel algorithm using Intel Threading Building Blocks and demonstrate considerable scaling (upto 2.6x) for 8 threads on a set of 10 benchmarks. Compared to the sequential implementation of staged flow-sensitive analysis, a single threaded execution of our implementation performs better in 8 of the benchmarks.
Resumo:
An AlCrCuNiFeCo high entropy alloy (HEA), which has simple face centered cubic (FCC) and body centered cubic (BCC) solid solution phases as the microstructural constituents, was processed and its high temperature deformation behaviour was examined as a function of temperature (700-1030 degrees C) and strain rate (10(-3)-10(-1) s(-1)), so as to identify the optimum thermo-mechanical processing (TMP) conditions for hot working of this alloy. For this purpose, power dissipation efficiency and deformation instability maps utilizing that the dynamic materials model pioneered by Prasad and co-workers have been generated and examined. Various deformation mechanisms, which operate in different temperature-strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate two distinct deformation domains within the range of experimental conditions examined, with the combination of 1000 degrees C/10(-3) s(-1) and 1030 degrees C/10(-2) s(-1) being the optimum for hot working. Flow instabilities associated with adiabatic shear banding, or localized plastic flow, and or cracking were found for 700-730 degrees C/10(-3)-10(-1) s(-1) and 750-860 degrees C/10(-1.4)-10(-1) s(-1) combinations. A constitutive equation that describes the flow stress of AlCrCuNiFeCo alloy as a function of strain rate and deformation temperature was also determined. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We show that every graph of maximum degree 3 can be represented as the intersection graph of axis parallel boxes in three dimensions, that is, every vertex can be mapped to an axis parallel box such that two boxes intersect if and only if their corresponding vertices are adjacent. In fact, we construct a representation in which any two intersecting boxes touch just at their boundaries.
Resumo:
In this paper based on the basic principles of gauge/gravity duality we compute the hall viscosity to entropy ratio in the presence of various higher derivative corrections to the dual gravitational description embedded in an asymptotically AdS(4) space time. As the first step of our analysis, considering the back reaction we impose higher derivative corrections to the abelian gauge sector of the theory where we notice that the ratio indeed gets corrected at the leading order in the coupling. Considering the probe limit as a special case we compute this leading order correction over the fixed background of the charged black brane solution. Finally we consider higher derivative (R-2) correction to the gravity sector of the theory where we notice that the above ratio might get corrected at the sixth derivative level.
Resumo:
Crystals of Boc-gamma y(4)(R)Val-Val-OH undergo a reversible first-order single crystal to single crystal phase transition at T-c approximate to 205 K from the orthorhombic space group P22(1)2(1) (Z' = 1) to the monoclinic space group P2(1) (Z' = 2) with a hysteresis of similar to 2.1 K. The low-temperature monoclinic form is best described as a nonmerohedral twin with similar to 50% contributions from its two components. The thermal behavior of the dipeptide crystals was characterized by differential scanning calorimetry experiments. Visual changes in birefringence of the sample during heating and cooling cycles on a hot-stage microscope with polarized light supported the phase transition. Variable-temperature unit cell check measurements from 300 to 100 K showed discontinuity in the volume and cell parameters near the transition temperature, supporting the first-order behavior. A detailed comparison of the room-temperature orthorhombic form with the low-temperature (100 K) monoclinic form revealed that the strong hydrogen-bonding motif is retained in both crystal systems, whereas the non-covalent interactions involving side chains of the dipeptide differ significantly, leading to a small change in molecular conformation in the monoclinic form as well as a small reorientation of the molecules along the ac plane. A rigid-body thermal motion analysis (translation, libration, screw; correlation of translation and libration) was performed to study the crystal entropy. The reversible nature of the phase transition is probably the result of an interplay between enthalpy and entropy: the low-temperature monoclinic form is enthalpically favored, whereas the room-temperature orthorhombic form is entropically favored.
Resumo:
We apply the objective method of Aldous to the problem of finding the minimum-cost edge cover of the complete graph with random independent and identically distributed edge costs. The limit, as the number of vertices goes to infinity, of the expected minimum cost for this problem is known via a combinatorial approach of Hessler and Wastlund. We provide a proof of this result using the machinery of the objective method and local weak convergence, which was used to prove the (2) limit of the random assignment problem. A proof via the objective method is useful because it provides us with more information on the nature of the edge's incident on a typical root in the minimum-cost edge cover. We further show that a belief propagation algorithm converges asymptotically to the optimal solution. This can be applied in a computational linguistics problem of semantic projection. The belief propagation algorithm yields a near optimal solution with lesser complexity than the known best algorithms designed for optimality in worst-case settings.
Resumo:
Rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges so that every pair of vertices is connected by at least one path in which no two edges are colored the same (note that the coloring need not be proper). In this paper we study the rainbow connection number with respect to three important graph product operations (namely the Cartesian product, the lexicographic product and the strong product) and the operation of taking the power of a graph. In this direction, we show that if G is a graph obtained by applying any of the operations mentioned above on non-trivial graphs, then rc(G) a parts per thousand currency sign 2r(G) + c, where r(G) denotes the radius of G and . In general the rainbow connection number of a bridgeless graph can be as high as the square of its radius 1]. This is an attempt to identify some graph classes which have rainbow connection number very close to the obvious lower bound of diameter (and thus the radius). The bounds reported are tight up to additive constants. The proofs are constructive and hence yield polynomial time -factor approximation algorithms.
Resumo:
In arXiv:1310.5713 1] and arXiv:1310.6659 2] a formula was proposed as the entanglement entropy functional for a general higher-derivative theory of gravity, whose lagrangian consists of terms containing contractions of the Riemann tensor. In this paper, we carry out some tests of this proposal. First, we find the surface equation of motion for general four-derivative gravity theory by minimizing the holographic entanglement entropy functional resulting from this proposed formula. Then we calculate the surface equation for the same theory using the generalized gravitational entropy method of arXiv:1304.4926 3]. We find that the two do not match in their entirety. We also construct the holographic entropy functional for quasi-topological gravity, which is a six-derivative gravity theory. We find that this functional gives the correct universal terms. However, as in the R-2 case, the generalized gravitational entropy method applied to this theory does not give exactly the surface equation of motion coming from minimizing the entropy functional.
Resumo:
We compute the logarithmic correction to black hole entropy about exponentially suppressed saddle points of the Quantum Entropy Function corresponding to Z(N) orbifolds of the near horizon geometry of the extremal black hole under study. By carefully accounting for zero mode contributions we show that the logarithmic contributions for quarter-BPS black holes in N = 4 supergravity and one-eighth BPS black holes in N = 8 supergravity perfectly match with the prediction from the microstate counting. We also find that the logarithmic contribution for half-BPS black holes in N = 2 supergravity depends non-trivially on the Z(N) orbifold. Our analysis draws heavily on the results we had previously obtained for heat kernel coefficients on Z(N) orbifolds of spheres and hyperboloids in arXiv:1311.6286 and we also propose a generalization of the Plancherel formula to Z(N) orbifolds of hyperboloids to an expression involving the Harish-Chandra character of sl (2, R), a result which is of possible mathematical interest.
Resumo:
Using generalized bosons, we construct the fuzzy sphere S-F(2) and monopoles on S-F(2) in a reducible representation of SU(2). The corresponding quantum states are naturally obtained using the GNS-construction. We show that there is an emergent nonabelian unitary gauge symmetry which is in the commutant of the algebra of observables. The quantum states are necessarily mixed and have non-vanishing von Neumann entropy, which increases monotonically under a bistochastic Markov map. The maximum value of the entropy has a simple relation to the degeneracy of the irreps that constitute the reducible representation that underlies the fuzzy sphere.
Resumo:
We consider conformal field theories in 1 + 1 dimensions with W-algebra symmetries, deformed by a chemical potential mu for the spin-three current. We show that the order mu(2) correction to the Renyi and entanglement entropies of a single interval in the deformed theory, on the infinite spatial line and at finite temperature, is universal. The correction is completely determined by the operator product expansion of two spin-three currents, and by the expectation values of the stress tensor, its descendants and its composites, evaluated on the n-sheeted Riemann surface branched along the interval. This explains the recently found agreement of the order mu(2) correction across distinct free field CFTs and higher spin black hole solutions holographically dual to CFTs with W symmetry.
Resumo:
We compute logarithmic corrections to the twisted index B-6(g) in four-dimensional N = 4 and N = 8 string theories using the framework of the Quantum Entropy Function. We find that these vanish, matching perfectly with the large-charge expansion of the corresponding microscopic expressions.
Resumo:
We develop new techniques to efficiently evaluate heat kernel coefficients for the Laplacian in the short-time expansion on spheres and hyperboloids with conical singularities. We then apply these techniques to explicitly compute the logarithmic contribution to black hole entropy from an N = 4 vector multiplet about a Z(N) orbifold of the near-horizon geometry of quarter-BPS black holes in N = 4 supergravity. We find that this vanishes, matching perfectly with the prediction from the microstate counting. We also discuss possible generalisations of our heat kernel results to higher-spin fields over ZN orbifolds of higher-dimensional spheres and hyperboloids.
Resumo:
We examine relative entropy in the context of the higher spin/CFT duality. We consider 3D bulk configurations in higher spin gravity which are dual to the vacuum and a high temperature state of a CFT with W-algebra symmetries in the presence of a chemical potential for a higher spin current. The relative entropy between these states is then evaluated using the Wilson line functional for holographic entanglement entropy. In the limit of small entangling intervals, the relative entropy should vanish for a generic quantum system. We confirm this behavior by showing that the difference in the expectation values of the modular Hamiltonian between the states matches with the difference in the entanglement entropy in the short-distance regime. Additionally, we compute the relative entropy of states corresponding to smooth solutions in the SL(2, Z) family with respect to the vacuum.
Resumo:
Spontaneous entry of water molecules inside single-wall carbon nanotubes (SWCNTs) has been confirmed by both simulations and experiments. Using molecular dynamics simulations, we have studied the thermodynamics of filling of a (6,6) carbon nanotube in a temperature range from 273 to 353K and with different strengths of the nanotube-water interaction. From explicit energy and entropy calculations using the two-phase thermodynamics method, we have presented a thermodynamic understanding of the filling behaviour of a nanotube. We show that both the energy and the entropy of transfer decrease with increasing temperature. On the other hand, scaling down the attractive part of the carbon-oxygen interaction results in increased energy of transfer while the entropy of transfer increases slowly with decreasing the interaction strength. Our results indicate that both energy and entropy favour water entry into (6,6) SWCNTs. Our results are compared with those of several recent studies of water entry into carbon nanotubes.