77 resultados para gram stain
Resumo:
In addressing the issue of prosthetic infection, this work demonstrated the synergistic effect of the application of static magnetic field (SMF) and ferrimagnetic substrate properties on the bactericidal property in vitro. This aspect was studied using hydroxyapatite (HA)-xFe(3)O(4) (x=10, 20, and 40 wt.%) substrates, which have different saturation magnetization properties. During bacteria culture experiments, 100 mT SMF was applied to growth medium (with HA-xFe(3)O(4) substrate) in vitro for 30, 120, and 240 min. A combination of MTT assay, membrane rupture assays, live/dead assay, and fluorescence microscopic analysis showed that the bactericidal effect of SMF increases with the exposure duration as well as increasing Fe3O4 content in biomaterial substrates. Importantly, the synergistic bactericidal effect was found to be independent of bacterial cell type, as similar qualitative trend is measured with both gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus) strains. The reduction in E. coli viability was 83% higher on HA-40 Wt % Fe3O4 composite after 4 h exposure to SMF as compared to nonexposed control. Interestingly, any statistically significant difference in ROS was not observed in bacterial growth medium after magnetic field exposure, indicating the absence of ROS enhancement due to magnetic field. Overall, this study illustrates significant role being played by magnetic substrate compositions towards bactericidal property than by magnetic field exposure alone. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 524-532, 2014.
Resumo:
Adhesive interaction between impacting bodies can cause energy loss, even in an otherwise elastic impact. Adhesion force induces tensile stress in the bodies, which modifies the stress wave profile and influences the restitution behavior. We investigate this effect by developing a finite element framework, which incorporates a Lennard-Jones-type potential for modeling the adhesive interaction between volume elements. With this framework, the classical problems in contact mechanics can be revisited without the restrictive surface-force approximation. In this paper, we study the longitudinal impact of an elastic cylinder on a rigid half-space with adhesion. In the absence of adhesion, this problem reduces to the impact between two identical cylinders in which there is no energy loss. Adhesion causes a fraction of energy in the stress waves to remain in the cylinder as residual stress waves. This apparent loss in kinetic energy is shown to be a unique function of maximum tensile strain energy. We have developed a 1-D model in terms of interaction force parameters, velocity and material properties to estimate the tensile stain energy. We show that this model can be used to predict practically important phenomena like capture wherein the impacting bodies stick together. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
Staphylococcus aureus is a commensal gram positive bacteria which causes severe and non severe infections in humans and livestock. In India, ST772 is a dominant and ST672 is an emerging clone of Staphylococcus aureus. Both cause serious human diseases, and carry type V SCCmec elements. The objective of this study was to characterize SCCmec type V elements of ST772 and ST672 because the usual PCR methods did not amplify all primers specific to the type. Whole genome sequencing analysis of seven ST772 and one ST672 S. aureus isolates revealed that the SCCmec elements of six of the ST772 isolates were the smallest of the extant type V elements and in addition have several other novel features. Only one ST772 isolate and the ST672 isolate carried bigger SCCmec cassettes which were composites carrying multiple ccrC genes. These cassettes had some similarities to type V SCCmec element from M013 isolate (ST59) from Taiwan in certain aspects. SCCmec elements of all Indian isolates had an inversion of the mec complex, similar to the bovine SCCmec type X. This study reveals that six out of seven ST772 S. aureus isolates have a novel type V (5C2) SCCmec element while one each of ST772 and ST672 isolates have a composite SCCmec type V element (5C2&5) formed by the integration of type V SCCmec into a MSSA carrying a SCC element, in addition to the mec gene complex inversions and extensive recombinations.
Resumo:
The present study examines an improved detoxification and rapid biological degradation of toxic pollutant acrylamide using a bacterium. The acrylamide degrading bacterium was isolated from the soil followed by its screening to know the acrylamide degrading capability. The minimal medium containing acrylamide (30 mM) served as a sole source of carbon and nitrogen for their active growth. The optimization of three different factors was analyzed by using Response Surface Methodology (RSM). The bacteria actively degraded the acrylamide at a temperature of 32 degrees C, with a maximum growth at 30 mM substrate (acrylamide) concentration at a pH of 7.2. The acrylamidase activity and degradation of acrylamide was determined by High Performance Liquid Chromatography (HPLC) and Matrix Assisted Laser Desorption and Ionization Time of Flight mass spectrometer (MALDI-TOF). Based on 168 rRNA analysis the selected strain was identified as Gram negative bacilli Stenotrophomonas acidaminiphila MSU12. The acrylamidase was isolated from bacterial extract and was purified by HPLC, whose mass spectrum showed a molecular mass of 38 kDa. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The potential of Citrobacter freundii, a Gram negative bacteria for the remediation of hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III))) from aqueous solutions was investigated. Bioremediation of Cr(VI) involved both biosorption and bioreduction processes, as compared to only biosorption process observed with respect to Cr(III) bioremediation. In the case of Cr(VI) bioremediation studies, about 59 % biosorption was achieved at an equilibrium time of 2 h, initial Cr(VI) concentration of 4 mg/L, pH 1 and a biomass loading of 5x10(11) cells/mL. The remainder, 41 %, was found to be in the form of Cr(111) ions owing to bioreduction of Cr(VI) by the bacteria resulting in the absence of Cr(VI) ions in the residue, there by meeting the USEPA specifications. Similar studies were carried out using Cr(III) solution for an equilibrium time of 2 h, Cr(III) concentration of 4 mg/L, pH 3 and a biomass loading of 6.3x10(11) cells/mL., wherein a maximum biosorption of about 30 % was achieved.
Resumo:
The objective of the present work is to understand the vertical electric field stimulation of the bacterial cells, when grown on amorphous carbon substrates in vitro. In particular, the antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli are studied using MTTassay, live/dead assay and inner membrane permeabilization assays. In our experiments, the carbon substrate acts as one electrode and the counter electrode is positioned outside the culture medium, thus suppressing the current, electrokinetic motions and chemical reactions. Guided by similar experiments conducted in our group on neuroblastoma cells, the present experimental results further establish the interdependence of field strength and exposure duration towards bacterial growth inactivation in vitro. Importantly, significant reduction in bacterial viability was recorded at the 2.5 V/cm electric field stimulation conditions, which does not reduce the neural cell viability to any significant extent on an identical substrate. Following electrical stimulation, the bacterial growth is significantly inhibited for S. aureus bacterial strain in an exposure time dependent manner. In summary, our experiments establish the effectiveness of the vertical electric field towards bacterial growth inactivation on amorphous carbon substrates, which is a cell type dependent phenomenon (Gram-positive vs. Gram-negative). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We report on the first chemical syntheses and structureactivity analyses of the cyclic lipopeptide battacin which revealed that conjugation of a shorter fatty acid, 4-methyl-hexanoic acid, and linearization of the peptide sequence improves antibacterial activity and reduces hemolysis of mouse blood cells. This surprising finding of higher potency in linear lipopeptides than their cyclic counterparts is economically beneficial. This novel lipopeptide was membrane lytic and exhibited antibiofilm activity against Pseudomonas aeruginosa, Staphylococcus aureus, and, for the first time, Pseudomonas syringe pv. actinidiae. The peptide was unstructured in aqueous buffer and dimyristoylphosphatidylcholine-polymerized diacetylene vesicles, with 12% helicity induced in 50% v/v of trifluoroethanol. Our results indicate that a well-defined secondary structure is not essential for the observed antibacterial activity of this novel lipopeptide. A truncated pentapeptide conjugated to 4-methyl hexanoic acid, having similar potency against Gram negative and Gram positive pathogens was identified through alanine scanning.
Resumo:
The transcriptional regulation of gene expression is orchestrated by complex networks of interacting genes. Increasing evidence indicates that these `transcriptional regulatory networks' (TRNs) in bacteria have an inherently hierarchical architecture, although the design principles and the specific advantages offered by this type of organization have not yet been fully elucidated. In this study, we focussed on the hierarchical structure of the TRN of the gram-positive bacterium Bacillus subtilis and performed a comparative analysis with the TRN of the gram-negative bacterium Escherichia coli. Using a graph-theoretic approach, we organized the transcription factors (TFs) and sigma-factors in the TRNs of B. subtilis and E. coli into three hierarchical levels (Top, Middle and Bottom) and studied several structural and functional properties across them. In addition to many similarities, we found also specific differences, explaining the majority of them with variations in the distribution of s-factors across the hierarchical levels in the two organisms. We then investigated the control of target metabolic genes by transcriptional regulators to characterize the differential regulation of three distinct metabolic subsystems (catabolism, anabolism and central energy metabolism). These results suggest that the hierarchical architecture that we observed in B. subtilis represents an effective organization of its TRN to achieve flexibility in response to a wide range of diverse stimuli.
Resumo:
A micromechanical approach is considered here to predict the deformation behaviour of Rheocast A356 (Al-Si-Mg) alloy. Two representative volume elements (RVEs) are modelled in the finite element (FE) framework. Two dimensional approximated microstructures are generated assuming elliptic grains, based on the grain size, shape factor and area fraction of the primary Al phase of the said alloy at different processing condition. Plastic instability is shown using stress and strain distribution between the Al rich primary and Si rich eutectic phases under different boundary conditions. Boundary conditions are applied on the approximated RVEs in such a manner, so that they represent the real life situation depending on their position on a cylindrical tensile test sample. FE analysis is carried out using commercial finite element code ABAQUS without specifying any damage or failure criteria. Micro-level in-homogeneity leads to incompatible deformation between the constituent phases of the rheocast alloy and steers plastic strain localisation. Plastic stain localised regions within the RVEs are predicted as the favourable sites for void nucleation. Subsequent growth of nucleated voids leads to final failure of the materials under investigation.
Resumo:
An unprecedented morphology of a titanium dioxide (TiO2) and cadmium sulfide (CdS) self-assembly obtained using a `truly' one-pot and highly cost effective method with a multi-gram scale yield is reported here. The TiO2-CdS assembly, comprising of TiO2 and CdS nanoparticles residing next to each other homogeneously self-assembling into `woollen knitting ball' like microspheres, exhibited remarkable potential as a visible light photocatalyst with high recyclability.
Resumo:
We present a nanostructured ``super surface'' fabricated using a simple recipe based on deep reactive ion etching of a silicon wafer. The topography of the surface is inspired by the surface topographical features of dragonfly wings. The super surface is comprised of nanopillars 4 mm in height and 220 nm in diameter with random inter-pillar spacing. The surface exhibited superhydrophobicity with a static water contact angle of 154.0 degrees and contact angle hysteresis of 8.3 degrees. Bacterial studies revealed the bactericidal property of the surface against both gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) strains through mechanical rupture of the cells by the sharp nanopillars. The cell viability on these nanostructured surfaces was nearly six-fold lower than on the unmodified silicon wafer. The nanostructured surface also killed mammalian cells (mouse osteoblasts) through mechanical rupture of the cell membrane. Thus, such nanostructured super surfaces could find applications for designing selfcleaning and anti-bacterial surfaces in diverse applications such as microfluidics, surgical instruments, pipelines and food packaging.
Resumo:
The present study focuses prudent elucidation of microbial pollution and antibiotic sensitivity profiling of the fecal coliforms isolated from River Cauvery, a major drinking water source in Karnataka, India. Water samples were collected from ten hotspots during the year 2011-2012. The physiochemical characteristics and microbial count of water samples collected from most of the hotspots exhibited greater biological oxygen demand and bacterial count especially coliforms in comparison with control samples (p <= 0.01). The antibiotic sensitivity testing was performed using 48 antibiotics against the bacterial isolates by disk-diffusion assay. The current study showed that out of 848 bacterial isolates, 93.51 % (n=793) of the isolates were found to be multidrug-resistant to most of the current generation antibiotics. Among the major isolates, 96.46 % (n=273) of the isolates were found to be multidrug-resistant to 30 antibiotics and they were identified to be Escherichia coli by 16S rDNA gene sequencing. Similarly, 93.85 % (n=107), 94.49 % (n=103), and 90.22 % (n=157) of the isolates exhibited multiple drug resistance to 32, 40, and 37 antibiotics, and they were identified to be Enterobacter cloacae, Pseudomonas trivialis, and Shigella sonnei, respectively. The molecular studies suggested the prevalence of blaTEM genes in all the four isolates and dhfr gene in Escherichia coli and Sh. sonnei. Analogously, most of the other Gram-negative bacteria were found to be multidrug-resistant and the Gram-positive bacteria, Staphylococcus spp. isolated from the water samples were found to be methicillin and vancomycin-resistant Staphylococcus aureus. This is probably the first study elucidating the bacterial pollution and antibiotic sensitivity profiling of fecal coliforms isolated from River Cauvery, Karnataka, India.
Resumo:
Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-alpha) secretion by macrophages was essential for robust SHH activation, as TNF-alpha(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-alpha or blockade of TNF-alpha receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.
Resumo:
We demonstrate in here a powerful scalable technology to synthesize continuously high quality CdSe quantum dots (QDs) in supercritical hexane. Using a low cost, highly thermally stable Cd-precursor, cadmium deoxycholate, the continuous synthesis is performed in 400 mu m ID stainless steel capillaries resulting in CdSe QDs having sharp full-width-at-half-maxima (23 nm) and high photoluminescence quantum yields (45-55%). Transmission electron microscopy images show narrow particles sizes distribution (sigma <= 5%) with well-defined crystal lattices. Using two different synthesis temperatures (250 degrees C and 310 degrees C), it was possible to obtain zinc blende and wurtzite crystal structures of CdSe QDs, respectively. This synthetic approach allows achieving substantial production rates up to 200 mg of QDs per hour depending on the targeted size, and could be easily scaled to gram per hour.
Resumo:
This paper presents the results of the laboratory model tests and the numerical studies conducted on small diameter PVC pipes, buried in geocell reinforced sand beds. The aim of the study was to evaluate the suitability of the geocell reinforcement in protecting the underground utilities and buried pipelines. In addition to geocells, the efficacy of only geogrid and geocell with additional basal geogrid cases were also studied. A PVC (Poly Vinyl Chloride) pipe with external diameter 75 mm and thickness 1.4 mm was used in the experiments. The vehicle tire contact pressure was simulated by applying the pressure on the top of the bed with the help of a steel plate. Results suggest that the use of geocells with additional basal geogrid considerably reduces the deformation of the pipe as compared to other types of reinforcements. Further, the depth of placement of pipe was also varied between 1B to 2B (B is the width of loading plate) below the plate in the presence of geocell with additional basal geogrid. More than 50% reduction in the pressure and more than 40% reduction in the strain values were observed in the presence of reinforcements at different depths as compared to the unreinforced beds. Conversely, the performance of the subgrade soil was also found to be marginally influenced by the position of the pipe, even in the presence of the relatively stiff reinforcement system. Further, experimental results were validated with 3-dimensional numerical studies using FLAC(3D) (Fast Lagrangian Analysis of Continua in 3D). A good agreement in the measured pipe stain values were observed between the experimental and numerical studies. Numerical studies revealed that the geocells distribute the stresses in the lateral direction and thus reduce the pressure on the pipe. In addition, the results of the 1-g model tests were scaled up to the prototype case of the shallow buried pipeline below the pavement using the appropriate scaling laws. (C) 2015 Elsevier Ltd. All rights reserved.