331 resultados para governing
Resumo:
A new class of exact solutions of plane gasdynamic equations is found which describes piston-driven shocks into non-uniform media. The governing equations of these flows are taken in the coordinate system used earlier by Ustinov, and their similarity form is determined by the method of infinitesimal transformations. The solutions give shocks with velocities which either decay or grown in a finite or infinite time depending on the density distribution in the ambient medium, although their strength remains constant. The results of the present study are related to earlier investigations describing the propagation of shocks of constant strength into non-uniform media.
Resumo:
The self-similar solution of the unsteady laminar incompressible two-dimensional and axisymmetric stagnation point boundary layers for micropolar fluids governing the flow and heat transfer problem has been obtained when the free stream velocity and the square of the mass transfer vary inversely as a linear function of time. The nonlinear ordinary differential equations governing the flow have been solved numerically using a quasilinear finite-Difference scheme. The results indicate that the coupling parameter, mass transfer and unsteadiness in the free stream velocity strongly affect the skin friction, microrotation gradient and heat transfer whereas the effect of microrotation parameter is strong only on the microrotation gradient. The heat transfer is strongly dependent on the prandtl number whereas the skin friction gradient are unaffected by it.
Resumo:
The hydromagnetic spinup or spindown of an incompressible, rotating, electrically conducting fluid over an infinite insulated disk with an applied magnetic field is studied when the impulsive motion is imparted either to the fluid or to the disk. The nonlinear partial differential equations governing the flow are solved numerically using an implicit finite-difference scheme. It is found that the spinup (or spindown) time due to impulsive motion of the disk is much shorter than the spinup (or spindown) time due to the impulsive motion of the distant fluid. The spinup (or spindown) time for the hydromagnetic case is comparatively smaller than the corresponding nonmagnetic case. Spindown is not merely a mirror reflection of spinup. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
An analytical-numerical procedure for obtaining stress intensity factor solutions for an arbitrarily oriented crack in a long, thin circular cylindrical shell is presented. The method of analysis involves obtaining a series solution to the governing shell equation in terms of Mathieu and modified Mathieu functions by the method of separation of variables and satisfying the crack surface boundary conditions numerically using collocation. The solution is then transformed from elliptic coordinates to polar coordinates with crack tip as the origin through a Taylor series expansion and membrane and bending stress intensity factors are computed. Numerical results are presented and discussed for the pressure loading case.
Resumo:
By using singular surface theory and ray theory the speeds of propagation of fast and slow waves, propagating into a medium in arbitrary motion, have been obtained in relativistic magnetohydrodynamics. The differential equation governing the growth of these waves along the rays has been derived and the solution has been presented in integral form.
Resumo:
Consummating our earlier work [1], the unsteady flow of a fairly concentrated suspension due to a single contraction or expansion of the walls of a tube is studied. A comparison of the results obtained by using two different formulae for the additional drag terms in the governing equations has been made. A region of circulation in the flow field is observed when the volume fraction Z greater-or-equal, slanted 0.3, the Schmidt number Sc < 1 and the density ratio (density of the particulate phase/density of the fluid phase) > 1.
Resumo:
A pair of semi-linear hyperbolic partial differential equations governing the slow variations in amplitude and phase of a quasi-monochromatic finite-amplitude Love-wave on an isotropic layered half-space is derived using the method of multiple-scales. The analysis of the exact solution of these equations for a signalling problem reveals that the amplitude of the wave remains constant along its characteristic and that the phase of the wave increases linearly behind the wave-front.
Resumo:
Unsteady nonsimilar laminar compressibletwo-dimensional and axisymmetric boundarylayer flows have been studied when external velocity varies arbitrarily with time and the flow is nonhomentropic. The governing nonlinear partial differential equations with three independent variables have been solved using an implicit finite difference scheme with quasilinearization technique from the origin to the point of zero skin-friction. The results have been obtained for (i) an accelerating stream and (ii) a fluctuating stream. The skin friction responds to the fluctuations in the free stream more compared to the heat transfer. It is observed that Mach number and hot wall cause the point of zero skin friction to occur earlier whereas cold wall delays it.
Resumo:
In this paper, an attempt is made to obtain the free vibration response of hybrid, laminated rectangular and skew plates. The Galerkin technique is employed to obtain an approximate solution of the governing differential equations. It is found that this technique is well suited for the study of such problems. Results are presented in a graphical form for plates with one pair of opposite edges simply supported and the other two edges clamped. The method is quite general and can be applied to any other boundary conditions.
Resumo:
Conformational energy calculations were carried out on penicillin α-and Β-sulfoxides and δ2- and δ3-cephalosporins, in order to identify the structural features governing their biological activity. Results on penicillin Β-sulfoxide indicated that in its favoured conformation, the orientation of the aminoacyl group was different from the one required for biological activity. Penicillin α sulfoxide, like penicillin sulfide, favoured two conformations of nearly equal energies, but separated by a much higher energy barrier. The reduced activity of the sulfoxides despite the nonplanarity of their lactam peptide indicated that the orientations of the aminoacyl and carboxyl groups might also govern biological activity. δ3-cephalosporins favoured two conformations of nearly equal energies, whereas δ2-cephalosporins favoured only one conformation. The lactam peptide was moderately nonplanÄr in the former, but nearly planar in the latter. The differences in the.preferred orientations of the carboxyl group between penicillins and cephalosporins were correlated with the resistance of cephalosporins to penicillinases.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
The purpose of this paper is to develop a sufficiently accurate analysis, which is much simpler than exact three-dimensional analysis, for statics and dynamics of composite laminates. The governing differential equations and boundary conditions are derived by following a variational approach. The displacements are assumed piecewise linear across the thickness and the effects of transverse shear deformations and rotary inertia are included. A procedure for obtaining the general solution of the above governing differential equations in the form of hyperbolic-trigonometric series is given. The accuracy of the present theory is assessed by obtaining results for free vibrations and flexure of simply supported rectangular laminates and comparing them with results from exact three-dimensional analysis.
Resumo:
Governing equations in the form of simultaneous ordinary differential equations have been derived for natural vibration analysis of isotropic laminated beams. This formulation includes significant secondary effects such as transverse shear and rotatory inetia. Through a numerical example, the influence of these secondary effects has been studied.
Resumo:
A perturbation technique is used to determine the stress concentration around reinforced curvilinear holes in thin pressurized spherical shells. Starting from the governing differential equations for thin shallow spherical shells, a solution is first obtained for a circular hole. The solution for an arbitrary shaped curvilinear hole is then obtained as a first-order perturbation over the circular hole solution using the conformal mapping technique. The effects of a large number of parameters involved in the design of a reinforcement around cutouts in shells are studied. The problems of symmetric and eccentric reinforcements are also considered. The results obtained would be very helpful in the design of an efficient reinforcement for elliptical and square holes in thin shallow spherical shells.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.