96 resultados para fractional Laplacian
Resumo:
Static disorder has recently been implicated in the non-exponential kinetics of the unfolding of single molecules of poly-ubiquitin under a constant force Kuo, Garcia-Manyes, Li, Barel, Lu, Berne, Urbakh, Klafter, and Fernandez, Proc. Natl. Acad. Sci. U. S. A. 107, 11336 (2010)]. In the present paper, it is suggested that dynamic disorder may provide a plausible, alternative description of the experimental observations. This suggestion is made on the basis of a model in which the barrier to chain unfolding is assumed to be modulated by a control parameter r that evolves in a parabolic potential under the action of fractional Gaussian noise according to a generalized Langevin equation. The treatment of dynamic disorder within this model is pursued using Zwanzig's indirect approach to noise averaging Acc. Chem. Res. 23, 148 (1990)]. In conjunction with a self-consistent closure scheme developed by Wilemski and Fixman J. Chem. Phys. 58, 4009 (1973); ibid. 60, 866 (1974)], this approach eventually leads to an expression for the chain unfolding probability that can be made to fit the corresponding experimental data very closely. (C) 2011 American Institute of Physics.
Resumo:
Gas-phase controlled absorption of ammonia in foams made of solutions of sulphuric acid has been studied experimentally. Effects of gas-phase concentration of ammonia and type of surfactant on the performance of the foam-bed reactor are investigated. Gas-phase controlled absorption from a spherical bubble is anaylzed using the asymptotic value of Sherwood number (Sh = 6.58), for both negligible as well as significant changes in the volume of the bubble. The experimental data are shown to be in good agreement with the single-stage model of the foam-bed reactor using these asymptotic sub-models, as well as the diffusion-in-sphere analysis available in literature. Influence of effective diffusivity on the time dependence of fractional gas absorption has been found to be unimportant for foam columns with large times of contact. The asymptotic sub-models have been compared and use of the rigid-sphere asymptotic sub-model is recommended for foam columns of practical relevence.
Resumo:
The initial motivation for this paper is to discuss a more concrete approach to an approximation theorem of Axler and Shields, which says that the uniform algebra on the closed unit disc (D) over bar generated by z and h, where h is a nowhere-holomorphic harmonic function on D that is continuous up to partial derivative D, equals C((D) over bar). The abstract tools used by Axler and Shields make harmonicity of h an essential condition for their result. We use the concepts of plurisubharmonicity and polynomial convexity to show that, in fact, the same conclusion is reached if h is replaced by h + R, where R is a non-harmonic perturbation whose Laplacian is ``small'' in a certain sense.
Resumo:
The distribution of stars and gas in many galaxies is asymmetric. This so-called lopsidedness is expected to significantly affect the dynamics and evolution of the disc, including the star formation activity. Here, we measure the degree of lopsidedness for the gas distribution in a selected sample of 70 galaxies from the Westerbork Hi Survey of Spiral and Irregular Galaxies. This complements our earlier work (Paper I) where the kinematic lopsidedness was derived for the same galaxies. The morphological lopsidedness is measured by performing a harmonic decomposition of the surface density maps. The amplitude of lopsidedness A(1), the fractional value of the first Fourier component, is typically quite high (about 0.1) within the optical disc and has a constant phase. Thus, lopsidedness is a common feature in galaxies and indicates a global mode. We measure A(1) out to typically one to four optical radii, sometimes even further. This is, on average, four times larger than the distance to which lopsidedness was measured in the past using near-IR as a tracer of the old stellar component, and therefore provides a new, more stringent constraint on the mechanism for the origin of lopsidedness. Interestingly, the value of A(1) saturates beyond the optical radius. Furthermore, the plot of A(1) versus radius shows fluctuations that we argue are due to local spiral features. We also try to explain the physical origin of this observed disc lopsidedness. No clear trend is found when the degree of lopsidedness is compared to a measure of the isolation or interaction probability of the sample galaxies. However, this does not rule out a tidal origin if the lopsidedness is long-lived. In addition, we find that the early-type galaxies tend to be more morphologically lopsided than the late-type galaxies. Both results together indicate that lopsidedness has a tidal origin.
Resumo:
A detailed investigation of viscosity dependence of the isomerization rate is carried out for continuous potentials by using a fully microscopic, self-consistent mode-coupling theory calculation of both the friction on the reactant and the viscosity of the medium. In this calculation we avoid approximating the short time response by the Enskog limit, which overestimates the friction at high frequencies. The isomerization rate is obtained by using the Grote-Hynes formula. The viscosity dependence of the rate has been investigated for a large number of thermodynamic state points. Since the activated barrier crossing dynamics probes the high-frequency frictional response of the liquid, the barrier crossing rate is found to be sensitive to the nature of the reactant-solvent interaction potential. When the solute-solvent interaction is modeled by a 6-12 Lennard-Jones potential, we find that over a large variation of viscosity (eta), the rate (k) can indeed be fitted very well to a fractional viscosity dependence: (k similar to eta(-alpha)), with the exponent alpha in the range 1 greater than or equal to alpha >0. The calculated values of the exponent appear to be in very good agreement with many experimental results. In particular, the theory, for the first time, explains the experimentally observed high value of alpha even at the barrier frequency, omega(b). similar or equal to 9 X 10(12) s(-1) for the isomerization reaction of 2-(2'-propenyl)anthracene in liquid eta-alkanes. The present study can also explain the reason for the very low value of vb observed in another study for the isomerization reaction of trans-stilbene in liquid n-alkanes. For omega(b) greater than or equal to 2.0 X 10(13) s(-1), we obtain alpha similar or equal to 0, which implies that the barrier crossing rate becomes identical to the transition-state theory predictions. A careful analysis of isomerization reaction dynamics involving large amplitude motion suggests that the barrier crossing dynamics itself may become irrelevant in highly viscous liquids and the rate might again be coupled directly to the viscosity. This crossover is predicted to be strongly temperature dependent and could be studied by changing the solvent viscosity by the application of pressure. (C) 1999 American Institute of Physics. [S0021-9606(9950514-X].
Resumo:
The ion conduction and thermal properties of composite solid polymer electrolyte (SPE) comprising Poly(ethylene) Glycol (PEG, mol wt. 2000), lithium perchlorate (LiClO4) and insulating Mn0.03Zn0.97Al2O4 nanoparticle fillers were studied by complex impedance analysis and DSC techniques. The average size of the nanoparticles was determined by powder X-ray diffraction (XRD) using Scherrer's equation and was found to be similar to 8 nm. The same was also determined by TEM imaging and found to be similar to 12 nm. The glass transition temperature T, as measured by differential scanning calorimeter (DSC), showed a minimum at 5 mol% of narroparticles. Fractional crystallinity was determined using DSC. NMR was used to deter-mine crystallinity of a pure PEG sample, which was then used as the standard. Fractional crystallinity X. was the lowest for 5 mol% and beyond. The ionic conductivity of the composite polymer electrolyte containing 5 mol% Mn0.03Zn0.97Al2O4 nanoparticles was found to be 1.82 x 10(-5) S/cm, while for the pristine one, it was 7.27 x 10(-7) S/cm at room temperature. As a function of nanoparticle content, conductivity was observed to go through two maxima, one at around 5 mol% and another shallower one at around 12 mol%. The temperature dependence of conductivity could be divided into two regions, one consistent with Arrhenius behaviour and the other with VTF. We conclude that the enhancement of ionic conductivity on the addition of Mn0.03Zn0.97Al2O4 nanoparticles is a result of reduction in both the T, and the crystallinity. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this article, finite-time consensus algorithms for a swarm of self-propelling agents based on sliding mode control and graph algebraic theories are presented. Algorithms are developed for swarms that can be described by balanced graphs and that are comprised of agents with dynamics of the same order. Agents with first and higher order dynamics are considered. For consensus, the agents' inputs are chosen to enforce sliding mode on surfaces dependent on the graph Laplacian matrix. The algorithms allow for the tuning of the time taken by the swarm to reach a consensus as well as the consensus value. As an example, the case when a swarm of first-order agents is in cyclic pursuit is considered.
Resumo:
In the present article we take up the study of nonlinear localization induced base isolation of a 3 degree of freedom system having cubic nonlinearities under sinusoidal base excitation. The damping forces in the system are described by functions of fractional derivative of the instantaneous displacements, typically linear and quadratic damping are considered here separately. Under the assumption of smallness of certain system parameters and nonlinear terms an approximate estimate of the response at each degree of freedom of the system is obtained by the Method of Multiple Scales approach. We then consider a similar system where the nonlinear terms and certain other parameters are no longer small. Direct numerical simulation is made use of to obtain the amplitude plot in the frequency domain for this case, which helps us to establish the efficacy of this method of base isolation for a broad class of systems. Base isolation obtained this way has no counterpart in the linear theory.
Resumo:
We construct a quantum random walk algorithm, based on the Dirac operator instead of the Laplacian. The algorithm explores multiple evolutionary branches by superposition of states, and does not require the coin toss instruction of classical randomised algorithms. We use this algorithm to search for a marked vertex on a hypercubic lattice in arbitrary dimensions. Our numerical and analytical results match the scaling behaviour of earlier algorithms that use a coin toss instruction.
Resumo:
Fusion of multi-sensor imaging data enables a synergetic interpretation of complementary information obtained by sensors of different spectral ranges. Multi-sensor data of diverse spectral, spatial and temporal resolutions require advanced numerical techniques for analysis and interpretation. This paper reviews ten advanced pixel based image fusion techniques – Component substitution (COS), Local mean and variance matching, Modified IHS (Intensity Hue Saturation), Fast Fourier Transformed-enhanced IHS, Laplacian Pyramid, Local regression, Smoothing filter (SF), Sparkle, SVHC and Synthetic Variable Ratio. The above techniques were tested on IKONOS data (Panchromatic band at 1 m spatial resolution and Multispectral 4 bands at 4 m spatial resolution). Evaluation of the fused results through various accuracy measures, revealed that SF and COS methods produce images closest to corresponding multi-sensor would observe at the highest resolution level (1 m).
Resumo:
We study the distribution of first passage time for Levy type anomalous diffusion. A fractional Fokker-Planck equation framework is introduced.For the zero drift case, using fractional calculus an explicit analytic solution for the first passage time density function in terms of Fox or H-functions is given. The asymptotic behaviour of the density function is discussed. For the nonzero drift case, we obtain an expression for the Laplace transform of the first passage time density function, from which the mean first passage time and variance are derived.
Resumo:
Closed-shell contacts between two copper(I) ions are expected to be repulsive. However, such contacts are quite frequent and are well documented. Crystallographic characterization of such contacts in unsupported and bridged multinuclear copper(I) complexes has repeatedly invited debates on the existence of cuprophilicity. Recent developments in the application of Baders theory of atoms-in-molecules (AIM) to systems in which weak hydrogen bonds are involved suggests that the copper(I)copper(I) contacts would benefit from a similar analysis. Thus the nature of electron-density distributions in copper(I) dimers that are unsupported, and those that are bridged, have been examined. A comparison of complexes that are dimers of symmetrical monomers and those that are dimers of two copper(I) monomers with different coordination spheres has also been made. AIM analysis shows that a bond critical point (BCP) between two Cu atoms is present in most cases. The nature of the BCP in terms of the electron density, ?, and its Laplacian is quite similar to the nature of critical points observed in hydrogen bonds in the same systems. The ? is inversely correlated to Cu?Cu distance. It is higher in asymmetrical systems than what is observed in corresponding symmetrical systems. By examining the ratio of the local electron potential-energy density (Vc) to the kinetic energy density (Gc), |Vc|/Gc at the critical point suggests that these interactions are not perfectly ionic but have some shared nature. Thus an analysis of critical points by using AIM theory points to the presence of an attractive metallophilic interaction similar to other well-documented weak interactions like hydrogen bonding.
Resumo:
A new solvatomorph of gallic acid was generated using chiral additive technique and characterized by single crystal and powder X-ray diffraction, C-13 NMR, IR spectroscopic techniques and thermal analysis. The supramolecular channels formed by hexameric motifs of gallic acid and solvent molecules contain highly disordered solvent molecules with fractional occupancies. © 2012 Elsevier B.V.
Resumo:
A computational tool called ``Directional Diffusion Regulator (DDR)'' is proposed to bring forth real multidimensional physics into the upwind discretization in some numerical schemes of hyperbolic conservation laws. The direction based regulator when used with dimension splitting solvers, is set to moderate the excess multidimensional diffusion and hence cause genuine multidimensional upwinding like effect. The basic idea of this regulator driven method is to retain a full upwind scheme across local discontinuities, with the upwind bias decreasing smoothly to a minimum in the farthest direction. The discontinuous solutions are quantified as gradients and the regulator parameter across a typical finite volume interface or a finite difference interpolation point is formulated based on fractional local maximum gradient in any of the weak solution flow variables (say density, pressure, temperature, Mach number or even wave velocity etc.). DDR is applied to both the non-convective as well as whole unsplit dissipative flux terms of some numerical schemes, mainly of Local Lax-Friedrichs, to solve some benchmark problems describing inviscid compressible flow, shallow water dynamics and magneto-hydrodynamics. The first order solutions consistently improved depending on the extent of grid non-alignment to discontinuities, with the major influence due to regulation of non-convective diffusion. The application is also experimented on schemes such as Roe, Jameson-Schmidt-Turkel and some second order accurate methods. The consistent improvement in accuracy either at moderate or marked levels, for a variety of problems and with increasing grid size, reasonably indicate a scope for DDR as a regular tool to impart genuine multidimensional upwinding effect in a simpler framework. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Levy flights can be described using a Fokker-Planck equation, which involves a fractional derivative operator in the position coordinate. Such an operator has its natural expression in the Fourier domain. Starting with this, we show that the solution of the equation can be written as a Hamiltonian path integral. Though this has been realized in the literature, the method has not found applications as the path integral appears difficult to evaluate. We show that a method in which one integrates over the position coordinates first, after which integration is performed over the momentum coordinates, can be used to evaluate several path integrals that are of interest. Using this, we evaluate the propagators for (a) free particle, (b) particle subjected to a linear potential, and (c) harmonic potential. In all the three cases, we have obtained results for both overdamped and underdamped cases. DOI: 10.1103/PhysRevE.86.061105