242 resultados para follicular wave
Resumo:
The presence of a gonadotropin receptor binding inhibitor in pooled porcine follicular fluid has been demonstrated. Porcine follicular fluid fractionation on DE-32 at near neutral pH, followed by a cation exchange chromatography on SPC-50 and Cibacron blue affinity chromatography, yielded a partially purified gonadotropin receptor binding inhibitor (GI-4). The partially purified GI binding inhibitor inhibited the binding of both 125I labelled hFSH and hCG to rat ovarian receptor preparation. SDS electrophoresis of radioiodinated partially purified GI followed by autoradiography made it possible to identify the binding component as a protein of molecular weight of 80000. Subjecting 125I labelled GI-4 to chromatography on Sephadex G-100 helped obtain a homogeneous material, Gl-5. The 125I labelled GI-5 exhibited in its binding to ovarian membrane preparations characteristics typical of a ligand-receptor interaction such as saturability, sensitivity to reaction conditions as time, ligand and receptor concentrations and finally displaceability by unlabelled inhibitor as well as FSH and hCG in a dose dependent manner. This material could bind ovarian receptors for both FSH and LH, its binding being inhibited by added FSH or hCG in a dose dependent manner.
Resumo:
In this paper, elastic wave propagation is studied in a nanocomposite reinforced with multiwall carbon nanotubes (CNTs). Analysis is performed on a representative volume element of square cross section. The frequency content of the exciting signal is at the terahertz level. Here, the composite is modeled as a higher order shear deformable beam using layerwise theory, to account for partial shear stress transfer between the CNTs and the matrix. The walls of the multiwall CNTs are considered to be connected throughout their length by distributed springs, whose stiffness is governed by the van der Waals force acting between the walls of nanotubes. The analyses in both the frequency and time domains are done using the wavelet-based spectral finite element method (WSFEM). The method uses the Daubechies wavelet basis approximation in time to reduce the governing PDE to a set of ODEs. These transformed ODEs are solved using a finite element (FE) technique by deriving an exact interpolating function in the transformed domain to obtain the exact dynamic stiffness matrix. Numerical analyses are performed to study the spectrum and dispersion relations for different matrix materials and also for different beam models. The effects of partial shear stress transfer between CNTs and matrix on the frequency response function (FRF) and the time response due to broadband impulse loading are investigated for different matrix materials. The simultaneous existence of four coupled propagating modes in a double-walled CNT-composite is also captured using modulated sinusoidal excitation.
Resumo:
The density-wave theory of Ramakrishnan and Yussouff is extended to provide a scheme for describing dislocations and other topological defects in crystals. Quantitative calculations are presented for the order-parameter profiles, the atomic configuration, and the free energy of a screw dislocation with Burgers vector b=(a/2, a/2, a/2) in a bcc solid. These calculations are done using a simple parametrization of the direct correlation function and a gradient expansion. It is conventional to express the free energy of the dislocation in a crystal of size R as (λb2/4π)ln(αR/‖b‖), where λ is the shear elastic constant, and α is a measure of the core energy. Our results yield for Na the value α≃1.94a/(‖c1’’‖)1/2 (≃1.85) at the freezing temperature (371 K) and α≃2.48a/(‖c1’’‖)1/2 at 271 K, where c1’’ is the curvature of the first peak of the direct correlation function c(q). Detailed results for the density distribution in the dislocation, particularly the core region, are also presented. These show that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order-parameter theory and incorporating thermal effects.
Resumo:
Abstract. In order to estimate the acoustic energy scattered when a unit volume of free turbulence, such as in free jets, interacts with a plane steady sound wave, theoretical expressions are derived for two simple models of turbulence: eddy model and isotropic model. The effect of convection by mean motion of the energy-bearing eddies on the incident sound wave and on the sound generated from wave-turbulence interaction is taken into account. Finally, by means of a representative calculation,the directionality pattern and Mach number dependence of the noise so generated is discussed.
Resumo:
A damage detection and imaging methodology based on symmetry of neighborhood sensor path and similarity of signal patterns with respect to radial paths in a circular array of sensors has been developed It uses information regarding Limb wave propagation along with a triangulation scheme to rapidly locate and quantify the severity of damage without using all of the sensor data. In a plate like structure, such a scheme can be effectively employed besides full field imaging of wave scattering pattern from the damage, if present in the plate. This new scheme is validated experimentally. Hole and corrosion type damages have been detected and quantified using the proposed scheme successfully. A wavelet based cumulative damage index has been studied which shows monotonic sensitivity against the severity of the damage. which is most desired in a Structural Health Monitoring system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Several investigators in the past have used the radiance depression (with respect to clear-sky infrared radiance), resulting from the presence of mineral dust aerosols in the atmosphere, as an index of dust aerosol load in the atmosphere during local noon. Here, we have used a modified approach to retrieve dust index during night since assessment of diurnal average infrared dust forcing essentially requires information on dust aerosols during night. For this purpose, we used infrared radiance (10.5-12.5 mu m), acquired from the METEOSAT-5 satellite (similar to 5 km resolution). We found that the `dust index' algorithm, valid for daytime, will no longer hold during the night because dust is then hotter than the theoretical dust-free reference. Hence we followed a `minimum reference' approach instead of a conventional `maximum reference' approach. A detailed analysis suggests that the maximum dust load occurs during the daytime. Over the desert regions of India and Africa, maximum change in dust load is as much as a factor of four between day and night and factor of two variations are commonly observed. By realizing the consequent impact on long wave dust forcing, sensitivity studies were carried out, which indicate that utilizing day time data for estimating the diurnally averaged long-wave dust radiative forcing results in significant errors (as much as 50 to 70%). Annually and regionally averaged long wave dust radiative forcing (which account for the diurnal variation of dust) at the top of the atmosphere over Afro-Asian region is 2.6 +/- 1.8 W m(-2), which is 30 to 50% lower than those reported earlier. Our studies indicate that neglecting diurnal variation of dust while assessing its radiative impact leads to an overestimation of dust radiative forcing, which in turn result in underestimation of the radiative impact of anthropogenic aerosols.
Resumo:
We give an explicit, direct, and fairly elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses only some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory; therefore it would form useful supplementary reading for a graduate course on quantum mechanics.
Resumo:
Initiation of follicular growth by specific hormonal stimuli in ovaries of immature rats and hamsters was studied by determining the rate of incorporation of3H-thymidine into ovarian DNAin vitro. Incorporation was considered as an index of DNA synthesis and cell multiplication. A single injection of pregnant mare serum gonadotropin could thus maximally stimulate by 18 hr3H-thymidine incorporation into DNA of the ovary of immature hamsters. Neutralization of pregnant mare serum gonadotropin by an antiserum to ovine follicle stimulating hormone only during the initial 8–10 hr and not later could inhibit the increase in3H-thymidine incorporationin vitro observed at 18 hr, suggesting that the continued presence of gonadotropin stimulus was not necessary for this response. The other indices of follicular growth monitored such as ovarian weight, serum estradiol and uterine weight showed discernible increase at periods only after the above initial event. A single injection of estrogen (diethyl stilbesterol or estradiol-l7β) could similarly cause 18 hr later, a stimulation in the rate of incorporation of3H-thymidine into DNAin vitro in ovaries of immature rats. The presence of endogenous gonadotropins, however, was obligatory for observing this response to estrogen. Evidence in support of the above was two-fold: (i) administration of antiserum to follicle stimulating hormone or luteinizing hormone along with estrogen completely inhibited the increase in3H-thymidine incorporation into ovarian DNAin vitro; (ii) a radioimmunological measurement revealed following estrogen treatment, the presence of a higher concentration of endogenous follicle stimulating hormone in the ovary. Finally, administration of varying doses of ovine follicle stimulating hormone along with a constant dose of estrogen to immature rats produced a dose-dependent increment in the incorporation of3H-thymidine into ovarian DNAin vitro. These observations suggested the potentiality of this system for developing a sensitive bioassay for follicle stimulating hormone.
Resumo:
In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A method is described for monitoring the concentration of endogenous receptor-bound gonadotropin in the ovarian tissue. This involved development of a radioimmunoassay procedure, the validity of which for measuring all of the tissue-bound hormone has been established. The specificity of the method of measurement was indicated by the fact that high levels of FSH could be measured only in target tissue such as follicles, while non-target organs showed little FSH. Using this method, the amount of FSH in the non-luteal ovarian tissue of the hamster at different stages of the estrous cycle was quantitated and compared with serum FSH levels found at these times. No correlation could be found between serum and tissue FSH levels at all times. On the morning of estrus, for example, when the serum level of FSH was high, the ovarian concentration was low, and on the evening of diestrus-2 the ovary exhibited high concentration of FSH, despite the serum FSH concentration being low at this time. The highest concentration of FSH in the ovary during the cycle was found on the evening of proestrus. Although a large amount of this was found in the Graafian follicles, a considerable amount could still be found in the �growing� follicles. Ovarian FSH concentration could be considered to be a reflection of FSH receptor content, since preventing the development of FSH receptors by blocking initiation of follicular development during the cycle resulted in a decrease in the concentration of FSH in the ovary. The high concentration of FSH in the ovary seen on the evening of diestrus-2 was not influenced either by varying the concentration of estrogen or by neutralization of LH. Neutralization of FSH on diestrus-2, on the other hand, caused a drastic reduction in the ovarian LH concentration on the next day (i.e. at proestrus), thus suggesting the importance of FSH in the induction of LH receptors.
Resumo:
It is shown that besides the continuous spectrum which damps away as inverse power of time, the coupled Alfvén wave equation, which gives coupling between a shear Alfvén wave and a surface wave, can also admit a well behaved harmonic solution in the closed form for a set of initial conditions. This solution, though valid for finite time intervals, points out that the Alfvén surface waves can have a band of frequency (instead of a monochromatic frequency for a nonsheared magnetic field) within which the local field line resonance frequency can lie, and thus can excite magnetic pulsations with latitude-dependent frequency. By considering magnetic fields not only varying in magnitude but also in direction, it is shown that the time interval for the validity of the harmonic solution depend upon the angle between the magnetic field directions on either side of the magnetopause. For small values of the angle the time interval can become appreciably large.