86 resultados para flexible warehouse
Resumo:
Development of simple functionalization methods to attach biomolecules such as proteins and DNA on inexpensive substrates is important for widespread use of low cost, disposable biosensors. Here, we describe a method based on polyelectrolyte multilayers to attach single stranded DNA molecules to conventional glass slides as well as a completely non-standard substrate, namely flexible plastic transparency sheets. We then use the functionalized transparency sheets to specifically detect single stranded Hepatitis B DNA sequences from samples. We also demonstrate a blocking method for reducing non-specific binding of target DNA sequences using negatively charged polyelectrolyte molecules. The polyelectrolyte based functionalization method, which relies on surface charge as opposed to covalent surface linkages, could be an attractive platform to develop assays on inexpensive substrates for low cost biosensing.
Resumo:
A low cost, reagent free, Escherichia coli sensor is demonstrated with graphene, on transparent flexible acetate substrate. Graphene is grown on 100 mu m thick Cu foil, using CVD process and subsequently transferred on to a flexible acetate substrate. Gold electrodes are deposited on graphene to form a two terminal, interdigitated capacitor structure. Impedance spectroscopy (10 Hz to 100 kHz) is performed to characterize the change in impedance, as a function of E. coli concentration on graphene surface. The residual methyl groups on graphene, resulting from the transfer process, act as binding sites for E. coli. It has been observed that the resistance of graphene decreases with increasing E. coli concentration. This is due to the increased hole doping induced by negatively charged E. coli. A sensitivity of 60% is achieved for an E. coli concentration of 4.5 x 10(7) cfu/ml. An equivalent RC model is proposed to explain the sensing mechanism. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Practical phantoms are essential to assess the electrical impedance tomography (EIT) systems for their validation, calibration and comparison purposes. Metal surface electrodes are generally used in practical phantoms which reduce the SNR of the boundary data due to their design and development errors. Novel flexible and biocompatible gold electrode arrays of high geometric precision are proposed to improve the boundary data quality in EIT. The flexible gold electrode arrays are developed on flexible FR4 sheets using thin film technology and practical gold electrode phantoms are developed with different configurations. Injecting a constant current to the phantom boundary the surface potentials are measured by a LabVIEW based data acquisition system and the resistivity images are reconstructed in EIDORS. Boundary data profile and the resistivity images obtained from the gold electrode phantoms are compared with identical phantoms developed with stainless steel electrodes. Surface profilometry, microscopy and the impedance spectroscopy show that the gold electrode arrays are smooth, geometrically precised and less resistive. Results show that the boundary data accuracy and image quality are improved with gold electrode arrays. Results show that the diametric resistivity plot (DRP), contrast to noise ratio (CNR), percentage of contrast recovery (PCR) and coefficient of contrast (COC) of reconstructed images are improved in gold electrode phantoms. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Zinc oxide nanorods (ZnO NRs) have been synthesized on flexible substrates by adopting a new and novel three-step process. The as-grown ZnO NRs are vertically aligned and have excellent chemical stoichiometry between its constituents. The transmission electron microscopic studies show that these NR structures are single crystalline and grown along the < 001 > direction. The optical studies show that these nanostructures have a direct optical band gap of about 3.34 eV. Therefore, the proposed methodology for the synthesis of vertically aligned NRs on flexible sheets launches a new route in the development of low-cost flexible devices. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Subtle manipulation of mutual repulsion and polarisation effects between polar and polarisable chromophores forced in closed proximity allows achieving major (100%) enhancement of the first hyperpolarisability together with increased transparency, breaking the well-known nonlinearity-transparency trade-off paradigm.
Resumo:
Peptide based self assembled nanostructures have attracted growing interest in recent years due to their numerous potential applications particularly in biomedical sciences. Di-peptide Phe-Phe was shown previously to self-assemble into nanotube like structures. In this work, we studied the affect of peptide backbone length and conformational flexibility on the self assembly process by using two dipeptides based on the Phe-Phe backbone (beta Phe-Phe and beta Phe-Delta Phe): one containing a flexible beta Phe amino acid, and the other containing both a flexible bPhe as well as a backbone constraining Alpha Phe (alpha,beta-dehydrophenylalanine) amino acid. Electron microscopy and X-ray diffraction experiments revealed that these new di-peptides can self-assemble into nanotubes having different properties than the native Phe-Phe nanotubes. These nanotubes were stable over a broad range of temperatures and the introduction of non-natural amino acids provided them with stability against the action of nonspecific proteases. Moreover, these dipeptides showed no cytotoxicity towards HeLa and L929 cells, and were able to encapsulate small drug molecules. We further showed that anticancerous drug mitoxantrone was more efficient in killing HeLa and B6F10 cells when entrapped in nanotubes as compared to free mitoxantrone. Therefore, these beta-phenylalanine and alpha, beta-dehydrophenylalanine containing dipeptide nanotubes may be useful in the development of biocompatible and proteolytically stable drug delivery vehicles.
Resumo:
This commentary discusses and summarizes the key highlights of our recently reported work entitled ``Neuronal Differentiation of Embryonic Stem Cell Derived Neuronal Progenitors Can Be Regulated by Stretchable Conducting Polymers.'' The prospect of controlling the mechanical-rigidity and the surface conductance properties offers a unique combination for tailoring the growth and differentiation of neuronal cells. We emphasize the utility of transparent elastomeric substrates with coatings of electrically conducting polymer to realize the desired substrate-characteristics for cellular development processes. Our study showed that neuronal differentiation from ES cells is highly influenced by the specific substrates on which they are growing. Thus, our results provide a better strategy for regulated neuronal differentiation by using such functional conducting surfaces.
Resumo:
The design methodology for flexible pavements needs to address the mechanisms of pavement failure, loading intensities and also develop suitable approaches for evaluation of pavement performance. In the recent years, the use of geocells to improve pavement performance has been receiving considerable attention. This paper studies the influence of geocells on the required thickness of pavements by placing it below the granular layers (base and sub-base) and above the subgrade. The reduction in thickness here refers to the reduction in the thickness of the GSB (Granular Sub-base) layer, with a possibility of altogether getting rid of it. To facilitate the analysis, a simple linear elastic approach is used, considering six of the sections as given in the Indian Roads Congress (IRC) code. All the analysis was done using the pavement analysis package KENPAVE. The results show that the use of geocells enables a reduction in pavement thickness.
Resumo:
We report on the systematic comparative study of highly c-axis oriented and crystalline piezoelectric ZnO thin films deposited on four different flexible substrates for vibration sensing application. The flexible substrates employed for present experimental study were namely a metal alloy (Phynox), metal (aluminum), polyimide (Kapton), and polyester (Mylar). ZnO thin films were deposited by an RF reactive magnetron sputtering technique. ZnO thin films of similar thicknesses of 700 +/- 30 nm were deposited on four different flexible substrates to have proper comparative studies. The crystallinity, surface morphology, chemical composition, and roughness of ZnO thin films were evaluated by respective material characterization techniques. The transverse piezoelectric coefficient (d(31)) value for assessing the piezoelectric property of ZnO thin films on different flexible substrates was measured by a four-point bending method. ZnO thin films deposited on Phynox alloy substrate showed relatively better material characterization results and a higher piezoelectric d(31) coefficient value as compared to ZnO films on metal and polymer substrates. In order to experimentally verify the above observations, vibration sensing studies were performed. As expected, the ZnO thin film deposited on Phynox alloy substrate showed better vibration sensing performance. It has generated the highest peak to peak output voltage amplitude of 256 mV as compared to that of aluminum (224 mV), Kapton (144 mV), and Mylar (46 mV). Therefore, metal alloy flexible substrate proves to be a more suitable, advantageous, and versatile choice for integrating ZnO thin films as compared to metal and polymer flexible substrates for vibration sensing applications. The present experimental study is extremely important and helpful for the selection of a suitable flexible substrate for various applications in the field of sensor and actuator technology.
Resumo:
Patterning nanostructures on flexible substrates plays a key role in the emerging flexible electronics technology. The flexible electronic devices are inexpensive and can be conformed to any shape. The potential applications for such devices are sensors, displays, solar cells, RFID, high-density biochips, optoelectronics etc. E-beam lithography is established as a powerful tool for nanoscale fabrication, but its applicability on insulating flexible substrates is often limited because of surface charging effects. This paper presents the fabrication of nanostructures on insulating flexible substrates using low energy E-beam lithography along with metallic layers for charge dissipation. Nano Structures are patterned on different substrates of materials such as acetate and PET foils. The fabrication process parameters such as the proximity gap of exposure, the exposure dosage and developing conditions have been optimized for each substrate.
Resumo:
CuIn1-xAlxSe2 (CIAS) thin films were grown on the flexible stainless steel substrates, by de co-sputtering from the elemental cathodes. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport and vacuum evaporation of Se. X-ray diffraction, scanning electron microscopy and UV-visible absorption spectroscopy were used to characterize the selenized films The composition (x=Al/Al+In) with 0 <= x <= 0.65 was varied by substituting Al with indium in CuInSe2. Lattice parameters, average crystallite sizes and compact density of the films compared to CuInSe2, decreased and (112) peak shifted to higher Bragg's angle, with Al incorporation. Cells were fabricated with the device structure SS/Mo/CIAS/CdS/iZno-AZO/Al. Best cell showed the efficiency of 6.8%, with x=0.13, Eg=1.17 eV, fill factor 45.04, short circuit current density J 30 mA/cm(2).
Resumo:
Vertically aligned zinc oxide nanorods (ZnO NRs) were synthesized on kapton flexible sheets using a simple and cost-effective three-step process (electrochemical seeding, annealing under ambient conditions, and chemical solution growth). Scanning electron microscopy studies reveal that ZnO NRs grown on seed-layers, developed by electrochemical deposition at a negative potential of 1.5 V over a duration of 2.5 min and annealed at 200 degrees C for 2 h, consist of uniform morphology and good chemical stoichiometry. Transmission electron microscopy analyses show that the as-grown ZnO NRs have single crystalline hexagonal structure with a preferential growth direction of < 001 >. Highly flexible p-n junction diodes fabricated by using p-type conductive polymer exhibited excellent diode characteristics even under the fold state.
Resumo:
Barrier materials are required for encapsulating organic devices. A simple methodology based on organic passivation layer on a flexible substrate has been developed in this work. Stearyl stearate ( SS) was directly coated over the flexible Surlyn film. The barrier films with SS passivation layer exhibited much lower water vapor transmission rates compared to the neat Surlyn films. Moreover, the effect of the process of deposition of organic passivation layer on the resultant water vapor properties of the barrier films was evaluated. The accelerated lifetime studies conducted on encapsulated organic photovoltaics showed that the passivation layer improved the device performance by several fold compared to the non-passivated barrier films. (C) 2014 AIP Publishing LLC.
Resumo:
Thin film transistors (TFTs) on elastomers promise flexible electronics with stretching and bending. Recently, there have been several experimental studies reporting the behavior of TFTs under bending and buckling. In the presence of stress, the insulator capacitance is influenced due to two reasons. The first is the variation in insulator thickness depending on the Poisson ratio and strain. The second is the geometric influence of the curvature of the insulator-semiconductor interface during bending or buckling. This paper models the role of curvature on TFT performance and brings to light an elegant result wherein the TFT characteristics is dependent on the area under the capacitance-distance curve. The paper compares models with simulations and explains several experimental findings reported in literature. (C) 2014 AIP Publishing LLC.
Resumo:
Two unique materials were developed, like graphene oxide (GO) sheets covalently grafted on to barium titanate (BT) nanoparticles and cobalt nanowires (Co-NWs), to attenuate the electromagnetic (EM) radiations in poly(vinylidene fluoride) (PVDF)-based composites. The rationale behind using either a ferroelectric or a ferromagnetic material in combination with intrinsically conducting nanoparticles (multiwall carbon nanotubes, CNTs), is to induce both electrical and magnetic dipoles in the system. Two key properties, namely, enhanced dielectric constant and magnetic permeability, were determined. PVDF/BT-GO composites exhibited higher dielectric constant compared to PVDF/BT and PVDF/GO composites. Co-NWs, which were synthesized by electrodeposition, exhibited saturation magnetization (M-s) of 40 emu/g and coercivity (Hc) of 300 G. Three phase hybrid composites were prepared by mixing CNTs with either BT-GO or Co-NWs in PVDF by solution blending. These nanoparticles showed high electrical conductivity and significant attenuation of EM radiations both in the X-band and in the Ku-band frequency. In addition, BT-GO/CNT and Co-NWs/CNT particles also enhanced the thermal conductivity of PVDF by ca. 8.7- and 9.3-fold in striking contrast to neat PVDF. This study open new avenues to design flexible and lightweight electromagnetic interference shielding materials by careful selection of functional nanoparticles