97 resultados para finite abelian p-group
Resumo:
We consider the Finkelstein action describing a system of spin-polarized or spinless electrons in 2+2epsilon dimensions, in the presence of disorder as well as the Coulomb interactions. We extend the renormalization-group analysis of our previous work and evaluate the metal-insulator transition of the electron gas to second order in an epsilon expansion. We obtain the complete scaling behavior of physical observables like the conductivity and the specific heat with varying frequency, temperature, and/or electron density. We extend the results for the interacting electron gas in 2+2epsilon dimensions to include the quantum critical behavior of the plateau transitions in the quantum Hall regime. Although these transitions have a very different microscopic origin and are controlled by a topological term in the action (theta term), the quantum critical behavior is in many ways the same in both cases. We show that the two independent critical exponents of the quantum Hall plateau transitions, previously denoted as nu and p, control not only the scaling behavior of the conductances sigma(xx) and sigma(xy) at finite temperatures T, but also the non-Fermi-liquid behavior of the specific heat (c(v)proportional toT(p)). To extract the numerical values of nu and p it is necessary to extend the experiments on transport to include the specific heat of the electron gas.
Resumo:
A three- dimensional, transient model is developed for studying heat transfer, fluid flow, and mass transfer for the case of a single- pass laser surface alloying process. The coupled momentum, energy, and species conservation equations are solved using a finite volume procedure. Phase change processes are modeled using a fixed-grid enthalpy-porosity technique, which is capable of predicting the continuously evolving solid- liquid interface. The three- dimensional model is able to predict the species concentration distribution inside the molten pool during alloying, as well as in the entire cross section of the solidified alloy. The model is simulated for different values of various significant processing parameters such as laser power, scanning speed, and powder feedrate in order to assess their influences on geometry and dynamics of the pool, cooling rates, as well as species concentration distribution inside the substrate. Effects of incorporating property variations in the numerical model are also discussed.
Resumo:
In this paper, a finite-element model is developed in which the nonlinear soil behavior is represented by a hyperbolic relation for static load condition and modified hyperbolic relation, which includes both degradation and gap for a cyclic load condition. Although batter piles are subjected to lateral load, the soil resistance is also governed by axial load, which is incorporated by considering the P-Δ moment and geometric stiffness matrix. By adopting the developed numerical model, static and cyclic load analyses are performed adopting an incremental-iterative procedure where the pile is idealized as beam elements and the soil as elastoplastic spring elements. The proposed numerical model is validated with published laboratory and field pile test results under both static and cyclic load conditions. This paper highlights the importance of the degradation factor and its influence on the soil resistance-displacement (p-y) curve, number of cycles of loading, and cyclic load response.
Resumo:
Azophenol complexes of formulation [(η6-p-cymene)RuCl(Ln)] (1–6, n=1–6) were prepared by two synthetic methods involving either an oxygen insertion to the Ru---C bond in cycloruthenated precursors forming complexes 1 and 2 or from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] with azophenol ligands (HL3–HL6) in the presence of sodium carbonate in CH2Cl2. The molecular structure of the 1-(phenylazo)-2-naphthol complex has been determined by X-ray crystallography. The complex has a η6-p-cymene group, a chloride and a bidentate N,O-donor azophenol ligand. The complexes have been characterized from NMR spectral data. The catalytic activity of the complexes has been studied for the conversion of acetophenone to the corresponding alcohol in the presence of KOH and isopropanol. Complexes 4 and 6 having a methoxy group attached to the ortho-position of the phenylazo moiety and 2 with a methyl group in the meta-position of the phenolic moiety show high percentage conversion (>84%).
Reconstructing Solid Model from 2D Scanned Images of Biological Organs for Finite Element Simulation
Resumo:
This work presents a methodology to reconstruct 3D biological organs from image sequences or other scan data using readily available free softwares with the final goal of using the organs (3D solids) for finite element analysis. The methodology deals with issues such as segmentation, conversion to polygonal surface meshes, and finally conversion of these meshes to 3D solids. The user is able to control the detail or the level of complexity of the solid constructed. The methodology is illustrated using 3D reconstruction of a porcine liver as an example. Finally, the reconstructed liver is imported into the commercial software ANSYS, and together with a cyst inside the liver, a nonlinear analysis performed. The results confirm that the methodology can be used for obtaining 3D geometry of biological organs. The results also demonstrate that the geometry obtained by following this methodology can be used for the nonlinear finite element analysis of organs. The methodology (or the procedure) would be of use in surgery planning and surgery simulation since both of these extensively use finite elements for numerical simulations and it is better if these simulations are carried out on patient specific organ geometries. Instead of following the present methodology, it would cost a lot to buy a commercial software which can reconstruct 3D biological organs from scanned image sequences.
Resumo:
A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.
Resumo:
A set of finite elements (FEs) is formulated to analyze wave propagation through inhomogeneous material when subjected to mechanical, thermal loading or piezo-electric actuation. Elastic, thermal and electrical properties of the materials axe allowed to vary in length and thickness direction. The elements can act both as sensors and actuators. These elements are used to model wave propagation in functionally graded materials (FGM) and the effect of inhomogeneity in the wave is demonstrated. Further, a surface acoustic wave (SAW) device is modeled and wave propagation due to piezo-electric actuation from interdigital transducers (IDTs) is studied.
Resumo:
Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.
Resumo:
Recently in, a framework was given to construct low ML decoding complexity Space-Time Block Codes (STBCs) via codes over the finite field F4. In this paper, we construct new full-diversity STBCs with cubic shaping property and low ML decoding complexity via codes over F4 for number of transmit antennas N = 2m, m >; 1, and rates R >; 1 complex symbols per channel use. The new codes have the least ML decoding complexity among all known codes for a large set of (N, R) pairs. The new full-rate codes of this paper (R = N) are not only information-lossless and fully diverse but also have the least known ML decoding complexity in the literature. For N ≥ 4, the new full-rate codes are the first instances of full-diversity, information-lossless STBCs with low ML decoding complexity. We also give a sufficient condition for STBCs obtainable from codes over F4 to have cubic shaping property, and a sufficient condition for any design to give rise to a full-diversity STBC when the symbols are encoded using rotated square QAM constellations.
Resumo:
On increasing the coupling strength (lambda) of a non-Abelian gauge field that induces a generalized Rashba spin-orbit interaction, the topology of the Fermi surface of a homogeneous gas of noninteracting fermions of density rho similar to k(F)(3) undergoes a change at a critical value, lambda(T) approximate to k(F) [Phys. Rev. B 84, 014512 ( 2011)]. In this paper we analyze how this phenomenon affects the size and shape of a cloud of spin-1/2 fermions trapped in a harmonic potential such as those used in cold atom experiments. We develop an adiabatic formulation, including the concomitant Pancharatnam-Berry phase effects, for the one-particle states in the presence of a trapping potential and the gauge field, obtaining approximate analytical formulas for the energy levels for some high symmetry gauge field configurations of interest. An analysis based on the local density approximation reveals that, for a given number of particles, the cloud shrinks in a characteristic fashion with increasing.. We explain the physical origins of this effect by a study of the stress tensor of the system. For an isotropic harmonic trap, the local density approximation predicts a spherical cloud even for anisotropic gauge field configurations. We show, via a calculation of the cloud shape using exact eigenstates, that for certain gauge field configurations there is a systematic and observable anisotropy in the cloud shape that increases with increasing gauge coupling lambda. The reasons for this anisotropy are explained using the analytical energy levels obtained via the adiabatic approximation. These results should be useful in the design of cold atom experiments with fermions in non-Abelian gauge fields. An important spin-off of our adiabatic formulation is that it reveals exciting possibilities for the cold-atom realization of interesting condensed matter Hamiltonians by using a non-Abelian gauge field in conjunction with another potential. In particular, we show that the use of a spherical non-Abelian gauge field with a harmonic trapping potential produces a monopole field giving rise to a spherical geometry quantum Hall-like Hamiltonian in the momentum representation.
Resumo:
We show that the Wiener Tauberian property holds for the Heisenberg Motion group TnB
Resumo:
In this paper we investigate the effect of terminal substituents on the dynamics of spin and charge transport in donor-acceptor substituted polyenes [D-(CH)(x)-A] chains, also known as push-pull polyenes. We employ a long-range correlated model Hamiltonian for the D-(CH)(x)-A system, and time-dependent density matrix renormalization group technique for time propagating the wave packet obtained by injecting a hole at a terminal site, in the ground state of the system. Our studies reveal that the end groups do not affect spin and charge velocities in any significant way, but change the amount of charge transported. We have compared these push-pull systems with donor-acceptor substituted polymethine imine (PMI), D-(CHN)(x)-A, systems in which besides electron affinities, the nature of p(z) orbitals in conjugation also alternate from site to site. We note that spin and charge dynamics in the PMIs are very different from that observed in the case of push-pull polyenes, and within the time scale of our studies, transport of spin and charge leads to the formation of a ``quasi-static'' state.
Resumo:
A grid adaptation strategy for unstructured data based codes, employing a combination of hexahedral and prismatic elements, generalizable to tetrahedral and pyramidal elements has been developed.