106 resultados para face classification
Resumo:
The present approach uses stopwords and the gaps that oc- cur between successive stopwords –formed by contentwords– as features for sentiment classification.
Resumo:
Time series classification deals with the problem of classification of data that is multivariate in nature. This means that one or more of the attributes is in the form of a sequence. The notion of similarity or distance, used in time series data, is significant and affects the accuracy, time, and space complexity of the classification algorithm. There exist numerous similarity measures for time series data, but each of them has its own disadvantages. Instead of relying upon a single similarity measure, our aim is to find the near optimal solution to the classification problem by combining different similarity measures. In this work, we use genetic algorithms to combine the similarity measures so as to get the best performance. The weightage given to different similarity measures evolves over a number of generations so as to get the best combination. We test our approach on a number of benchmark time series datasets and present promising results.
Resumo:
This paper presents a new hierarchical clustering algorithm for crop stage classification using hyperspectral satellite image. Amongst the multiple benefits and uses of remote sensing, one of the important application is to solve the problem of crop stage classification. Modern commercial imaging satellites, owing to their large volume of satellite imagery, offer greater opportunities for automated image analysis. Hence, we propose a unsupervised algorithm namely Hierarchical Artificial Immune System (HAIS) of two steps: splitting the cluster centers and merging them. The high dimensionality of the data has been reduced with the help of Principal Component Analysis (PCA). The classification results have been compared with K-means and Artificial Immune System algorithms. From the results obtained, we conclude that the proposed hierarchical clustering algorithm is accurate.
Resumo:
Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT (N-30) and SWV (V-s(30)) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V-s(30) and site class D and E based on N-30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N-30 and V-s(30) raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets of SPT and SWV data are used to develop a correlation between N-SPT and SWV. This represents a first attempt of seismic site classification and correlation between N-SPT and SWV in the Indo-Gangetic Basin.
Resumo:
This paper presents an efficient approach to the modeling and classification of vehicles using the magnetic signature of the vehicle. A database was created using the magnetic signature collected over a wide range of vehicles(cars). A vehicle is modeled as an array of magnetic dipoles. The strength of the magnetic dipole and the separation between the magnetic dipoles varies for different vehicles and is dependent on the metallic composition and configuration of the vehicle. Based on the magnetic dipole data model, we present a novel method to extract a feature vector from the magnetic signature. In the classification of vehicles, a linear support vector machine configuration is used to classify the vehicles based on the obtained feature vectors.
Resumo:
Effective conservation and management of natural resources requires up-to-date information of the land cover (LC) types and their dynamics. The LC dynamics are being captured using multi-resolution remote sensing (RS) data with appropriate classification strategies. RS data with important environmental layers (either remotely acquired or derived from ground measurements) would however be more effective in addressing LC dynamics and associated changes. These ancillary layers provide additional information for delineating LC classes' decision boundaries compared to the conventional classification techniques. This communication ascertains the possibility of improved classification accuracy of RS data with ancillary and derived geographical layers such as vegetation index, temperature, digital elevation model (DEM), aspect, slope and texture. This has been implemented in three terrains of varying topography. The study would help in the selection of appropriate ancillary data depending on the terrain for better classified information.
Resumo:
In document community support vector machines and naïve bayes classifier are known for their simplistic yet excellent performance. Normally the feature subsets used by these two approaches complement each other, however a little has been done to combine them. The essence of this paper is a linear classifier, very similar to these two. We propose a novel way of combining these two approaches, which synthesizes best of them into a hybrid model. We evaluate the proposed approach using 20ng dataset, and compare it with its counterparts. The efficacy of our results strongly corroborate the effectiveness of our approach.
Resumo:
Classification of a large document collection involves dealing with a huge feature space where each distinct word is a feature. In such an environment, classification is a costly task both in terms of running time and computing resources. Further it will not guarantee optimal results because it is likely to overfit by considering every feature for classification. In such a context, feature selection is inevitable. This work analyses the feature selection methods, explores the relations among them and attempts to find a minimal subset of features which are discriminative for document classification.
Resumo:
Seismic site classifications are used to represent site effects for estimating hazard parameters (response spectral ordinates) at the soil surface. Seismic site classifications have generally been carried out using average shear wave velocity and/or standard penetration test n-values of top 30-m soil layers, according to the recommendations of the National Earthquake Hazards Reduction Program (NEHRP) or the International Building Code (IBC). The site classification system in the NEHRP and the IBC is based on the studies carried out in the United States where soil layers extend up to several hundred meters before reaching any distinct soil-bedrock interface and may not be directly applicable to other regions, especially in regions having shallow geological deposits. This paper investigates the influence of rock depth on site classes based on the recommendations of the NEHRP and the IBC. For this study, soil sites having a wide range of average shear wave velocities (or standard penetration test n-values) have been collected from different parts of Australia, China, and India. Shear wave velocities of rock layers underneath soil layers have also been collected at depths from a few meters to 180 m. It is shown that a site classification system based on the top 30-m soil layers often represents stiffer site classes for soil sites having shallow rock depths (rock depths less than 25 m from the soil surface). A new site classification system based on average soil thickness up to engineering bedrock has been proposed herein, which is considered more representative for soil sites in shallow bedrock regions. It has been observed that response spectral ordinates, amplification factors, and site periods estimated using one-dimensional shear wave analysis considering the depth of engineering bedrock are different from those obtained considering top 30-m soil layers.
Resumo:
There are many popular models available for classification of documents like Naïve Bayes Classifier, k-Nearest Neighbors and Support Vector Machine. In all these cases, the representation is based on the “Bag of words” model. This model doesn't capture the actual semantic meaning of a word in a particular document. Semantics are better captured by proximity of words and their occurrence in the document. We propose a new “Bag of Phrases” model to capture this discriminative power of phrases for text classification. We present a novel algorithm to extract phrases from the corpus using the well known topic model, Latent Dirichlet Allocation(LDA), and to integrate them in vector space model for classification. Experiments show a better performance of classifiers with the new Bag of Phrases model against related representation models.
Resumo:
The presence of a large number of spectral bands in the hyperspectral images increases the capability to distinguish between various physical structures. However, they suffer from the high dimensionality of the data. Hence, the processing of hyperspectral images is applied in two stages: dimensionality reduction and unsupervised classification techniques. The high dimensionality of the data has been reduced with the help of Principal Component Analysis (PCA). The selected dimensions are classified using Niche Hierarchical Artificial Immune System (NHAIS). The NHAIS combines the splitting method to search for the optimal cluster centers using niching procedure and the merging method is used to group the data points based on majority voting. Results are presented for two hyperspectral images namely EO-1 Hyperion image and Indian pines image. A performance comparison of this proposed hierarchical clustering algorithm with the earlier three unsupervised algorithms is presented. From the results obtained, we deduce that the NHAIS is efficient.
Resumo:
Crop type classification using remote sensing data plays a vital role in planning cultivation activities and for optimal usage of the available fertile land. Thus a reliable and precise classification of agricultural crops can help improve agricultural productivity. Hence in this paper a gene expression programming based fuzzy logic approach for multiclass crop classification using Multispectral satellite image is proposed. The purpose of this work is to utilize the optimization capabilities of GEP for tuning the fuzzy membership functions. The capabilities of GEP as a classifier is also studied. The proposed method is compared to Bayesian and Maximum likelihood classifier in terms of performance evaluation. From the results we can conclude that the proposed method is effective for classification.
Resumo:
Chebyshev-inequality-based convex relaxations of Chance-Constrained Programs (CCPs) are shown to be useful for learning classifiers on massive datasets. In particular, an algorithm that integrates efficient clustering procedures and CCP approaches for computing classifiers on large datasets is proposed. The key idea is to identify high density regions or clusters from individual class conditional densities and then use a CCP formulation to learn a classifier on the clusters. The CCP formulation ensures that most of the data points in a cluster are correctly classified by employing a Chebyshev-inequality-based convex relaxation. This relaxation is heavily dependent on the second-order statistics. However, this formulation and in general such relaxations that depend on the second-order moments are susceptible to moment estimation errors. One of the contributions of the paper is to propose several formulations that are robust to such errors. In particular a generic way of making such formulations robust to moment estimation errors is illustrated using two novel confidence sets. An important contribution is to show that when either of the confidence sets is employed, for the special case of a spherical normal distribution of clusters, the robust variant of the formulation can be posed as a second-order cone program. Empirical results show that the robust formulations achieve accuracies comparable to that with true moments, even when moment estimates are erroneous. Results also illustrate the benefits of employing the proposed methodology for robust classification of large-scale datasets.
Resumo:
Moving shadow detection and removal from the extracted foreground regions of video frames, aim to limit the risk of misconsideration of moving shadows as a part of moving objects. This operation thus enhances the rate of accuracy in detection and classification of moving objects. With a similar reasoning, the present paper proposes an efficient method for the discrimination of moving object and moving shadow regions in a video sequence, with no human intervention. Also, it requires less computational burden and works effectively under dynamic traffic road conditions on highways (with and without marking lines), street ways (with and without marking lines). Further, we have used scale-invariant feature transform-based features for the classification of moving vehicles (with and without shadow regions), which enhances the effectiveness of the proposed method. The potentiality of the method is tested with various data sets collected from different road traffic scenarios, and its superiority is compared with the existing methods. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
This paper presents an efficient approach to the modeling and classification of vehicles using the magnetic signature of the vehicle. A database was created using the magnetic signature collected over a wide range of vehicles(cars). A sensor dependent approach called as Magnetic Field Angle Model is proposed for modeling the obtained magnetic signature. Based on the data model, we present a novel method to extract the feature vector from the magnetic signature. In the classification of vehicles, a linear support vector machine configuration is used to classify the vehicles based on the obtained feature vectors.