64 resultados para explicit formulas
Resumo:
A systematic derivation of the approximate coupled amplitude equations governing the propagation of a quasi-monochromatic Rayleigh surface wave on an isotropic solid is presented, starting from the non-linear governing differential equations and the non-linear free-surface boundary conditions, using the method of mulitple scales. An explicit solution of these equations for a signalling problem is obtained in terms of hyperbolic functions. In the case of monochromatic excitation, it is shown that the second harmonic amplitude grows initially at the expense of the fundamental and that the amplitudes of the fundamental and second harmonic remain bounded for all time.
Resumo:
An important question which has to be answered in evaluting the suitability of a microcomputer for a control application is the time it would take to execute the specified control algorithm. In this paper, we present a method of obtaining closed-form formulas to estimate this time. These formulas are applicable to control algorithms in which arithmetic operations and matrix manipulations dominate. The method does not require writing detailed programs for implementing the control algorithm. Using this method, the execution times of a variety of control algorithms on a range of 16-bit mini- and recently announced microcomputers are calculated. The formulas have been verified independently by an analysis program, which computes the execution time bounds of control algorithms coded in Pascal when they are run on a specified micro- or minicomputer.
Resumo:
Among different methods, the transmission-line or the impedance tube method has been most popular for the experimental evaluation of the acoustical impedance of any termination. The current state of method involves extrapolation of the measured data to the reflecting surface or exact locations of the pressure maxima, both of which are known to be rather tricky. The present paper discusses a method which makes use of the positions of the pressure minima and the values of the standing-wave ratio at these points. Lippert's concept of enveloping curves has been extended. The use of Smith or Beranek charts, with their inherent inaccuracy, has been altogether avoided. The existing formulas for the impedance have been corrected. Incidentally, certain other errors in the current literature have also been brought to light.Subject Classification: 85.20.
Resumo:
A primary motivation for this work arises from the contradictory results obtained in some recent measurements of the zero-crossing frequency of turbulent fluctuations in shear flows. A systematic study of the various factors involved in zero-crossing measurements shows that the dynamic range of the signal, the discriminator characteristics, filter frequency and noise contamination have a strong bearing on the results obtained. These effects are analysed, and explicit corrections for noise contamination have been worked out. New measurements of the zero-crossing frequency N0 have been made for the longitudinal velocity fluctuation in boundary layers and a wake, for wall shear stress in a channel, and for temperature derivatives in a heated boundary layer. All these measurements show that a zero-crossing microscale, defined as Λ = (2πN0)−1, is always nearly equal to the well-known Taylor microscale λ (in time). These measurements, as well as a brief analysis, show that even strong departures from Gaussianity do not necessarily yield values appreciably different from unity for the ratio Λ/λ. Further, the variation of N0/N0 max across the boundary layer is found to correlate with the familiar wall and outer coordinates; the outer scaling for N0 max is totally inappropriate, and the inner scaling shows only a weak Reynolds-number dependence. It is also found that the distribution of the interval between successive zero-crossings can be approximated by a combination of a lognormal and an exponential, or (if the shortest intervals are ignored) even of two exponentials, one of which characterizes crossings whose duration is of the order of the wall-variable timescale ν/U2*, while the other characterizes crossings whose duration is of the order of the large-eddy timescale δ/U[infty infinity]. The significance of these results is discussed, and it is particularly argued that the pulse frequency of Rao, Narasimha & Badri Narayanan (1971) is appreciably less than the zero-crossing rate.