115 resultados para experimental analysis of behaviour


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple one dimensional inertial model is presented for transient response analysis of notched beams under impact, and extracting dynamic initiation toughness values. The model includes the effects of striker mass interactions, and contact deformations of the beam. Displacement time history of the striker mass is applied to the model as forcing function. The model is validated by comparison with the experimental investigation on ductile aluminium 6061 alloy and brittle polymer, PMMA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of microstructure and texture during extrusion of pure magnesium and its single phase alloy AM30 has been studied experimentally as well as by crystal plasticity simulation. Microstructure and micro-texture were characterized by electron back scattered diffraction (EBSD), bulk-texture was measured using X-ray diffraction and deformation texture simulations were carried out using visco-plastic self consistent (VPSC) model. In spite of clear indications of the occurrence of dynamic recrystallization (DRX), simulations were able to reproduce the experimental textures successfully. This was attributed to the fact that the textures were c-type fibers with their axis of rotation parallel to the c-axis and DRX leads to simply rotate the texture around the c-axis. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental charge density distribution in 2-chloro-4-fluorobenzoic acid and 4-fluorobenzamide has been carried out using high resolution X-ray diffraction data collected at 100 K using Hansen-Coppens multipolar formalism of electron density. These compounds display short Cl center dot center dot center dot F and F center dot center dot center dot F interactions, respectively. The experimental results are compared with the theoretical charge densities using theoretical structure factors obtained from periodic quantum calculation at the B3LYP/6-31G** level. The topological features were derived from Bader's ``atoms in molecules'' (AIM) approach. Intermolecular Cl center dot center dot center dot F interaction in 2-chloro-4-fluorobenzoic acid is attractive in nature (type II interaction) while the nature of F center dot center dot center dot F interactions in 4-fluorobenzamide shows indication of a minor decrease in repulsion (type I interaction), though the extent of polarization on the fluorine atom is arguably small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular mechanics calculations have been carried out to quantify the key geometric and strain effects which are likely to control the homo-Diels-Alder reactivity of 1,4-dienes. The criteria considered include C1..C5 and C2..C4 distances in the diene, twist angle of the two pi units, and the magnitude of strain increase as a result of cycloaddition. By first considering these factors in a number of non-conjugated dienes with known reactivity, the ranges of values within which the reaction is favoured are proposed. Calculations are also reported on several substrates which have not been investigated so far. Promising systems for experimental study are suggested which, in addition to being intrinsically interesting, would place the present proposals on a firm basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rigorous elastic-plastic finite element analysis of joints subjected to cyclic loading is carried out. An incremental-iterative algorithm is developed in a modular form combining elasto-plastic material behaviour and contact stress analysis. For the case of the interference fit, the analysis sequentially carries out insertion of the pin and application of the load on the joint, covering possible initiation of separation (and/or yielding) and progressively the receding/advancing contact at the pin-plate interface. Deformations of both the plate and the pin are considered in the analysis. Numerical examples are presented for the case of an interference fit pin in a large plate under remote cyclic tension, and for an interference fit pin lug joint subjected to cyclic loading. A detailed study is carried out for the latter problem considering the effect of change in contact/separation at the pin-plate interface on local stresses, strains and redistribution of these stresses with the spread of a plastic zone. The results of the study are a useful input for the estimation of the fatigue life of joints. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variable cross-sectional area ducts are often used for attenuation at lower frequencies (of the order of firing frequency), whereas concentric tube resonators provide attenuation at relatively higher frequencies. In this paper, analysis of one dimensional control volume approach of conical concentric tube resonators is validated experimentally. The effects of mean flow and taper are investigated. The experimental setup is specially designed to measure the pressure transfer function in the form of Level Difference or Noise Reduction across the test muffler. It is shown that there is a reasonably good agreement between the predicted values of the Noise Reduction and the measured ones for incompressible mean flow as well as stationary medium. (C) 2011 Institute of Noise Control Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a plane stress solution for the interaction analysis of strip footing resting on (i) a non-homogeneous elastic half-plane and (ii) a non-homogeneous elastic layer resting on a rigid stratum has been presented. The analysis has been done using a combined analytical and FEM method in which the discretization of the half-plane is not required and thereby minimizes the computational efforts considerably. The contact pressure distribution and the settlement profile for the selected cases of varying modulus half-plane, which has more relevance to foundation engineering, have been given. Experimental verification through a photoelastic method of stress analysis has been carried out for the case of footing on Gibson elastic half-plane, and the contact pressure distribution thus obtained has been compared with the theoretical results. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The general equation for one-dimensional wave propagation at low flow Mach numbers (M less-than-or-equals, slant0·2) is derived and is solved analytically for conical and exponential shapes. The transfer matrices are derived and shown to be self-consistent. Comparison is also made with the relevant data available in the literature. The transmission loss behaviour of conical and exponential pipes, and mufflers involving these shapes, are studied. Analytical expressions of the same are given for the case of a stationary medium. The mufflers involving conical and exponential pipes are shown to be inferior to simple expansion chambers (of similar dimensions) at higher frequencies from the point of view of noise abatement, as was observed earlier experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present experimental x-ray-absorption spectra at the oxygen and 3d transition-metal K edges of LaFeO3 and LaCoO3. We interpret the experimental results in terms of detailed theoretical calculations based on multiple-scattering theory. Along with providing an understanding of the origin of various experimental features, we investigate the effects of structural distortions and the core-hole potential in determining the experimental spectral shape. The results indicate that the core-hole potential as well as many-body effects within the valence electrons do not have any strong effect on the spectra suggesting that the spectral features can be directly interpreted in terms of the electronic structure of such compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents nonlinear finite element analysis of adhesively bonded joints considering the elastoviscoplastic constitutive model of the adhesive material and the finite rotation of the joint. Though the adherends have been assumed to be linearly elastic, the yielding of the adhesive is represented by a pressure sensitive modified von Mises yield function. The stress-strain relation of the adhesive is represented by the Ramberg-Osgood relation. Geometric nonlinearity due to finite rotation in the joint is accounted for using the Green-Lagrange strain tensor and the second Piola-Kirchhoff stress tensor in a total Lagrangian formulation. Critical time steps have been calculated based on the eigenvalues of the transition matrices of the viscoplastic model of the adhesive. Stability of the viscoplastic solution and time dependent behaviour of the joints are examined. A parametric study has been carried out with particular reference to peel and shear stress along the interface. Critical zones for failure of joints have been identified. The study is of significance in the design of lap joints as well as on the characterization of adhesive strength. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we outline a systematic procedure for scaling analysis of momentum and heat transfer in laser melted pools. With suitable choices of non-dimensionalising parameters, the governing equations coupled with appropriate boundary conditions are first scaled, and the relative significance of various terms appearing in them are accordingly analysed. The analysis is then utilised to predict the orders of magnitude of some important quantities, such as the velocity scale at the top surface, velocity boundary layer thickness, maximum temperature rise in the pool, fully developed pool-depth, and time required for initiation of melting. Using the scaling predictions, the influence of various processing parameters on the system variables can be well recognised, which enables us to develop a deeper insight into the physical problem of interest. Moreover, some of the quantities predicted from the scaling analysis can be utilised for optimised selection of appropriate grid-size and time-steps for full numerical simulation of the process. The scaling predictions are finally assessed by comparison with experimental and numerical results quoted in the literature, and an excellent qualitative agreement is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There have been extensive experimental observations of changes in the apparent rate controlling creep parameters in studies on superplastic materials. The three most common explanations associated with these changes in the stress exponent, n, the activation energy Q and the inverse grain size exponent, p involve the effect of concurrent grain growth, the operation of a threshold stress or transitions in creep mechanisms. Each of these factors may influence experimental creep data in a similar manner. Therefore, a careful analysis of the consequences of all three factors must involve the development of a consistent set of experimental observations in order to adequately distinguish the effects of each. This paper discusses the role of concurrent grain growth, a threshold stress and transitions in creep mechanisms in superplastic materials. Specific attention is given to the analysis of data on superplastic yttria-stabilized zirconia ceramics for which an increase in n has been observed at low applied stresses. It is demonstrated that neither concurrent grain growth nor a threshold stress can account for all the relevant experimental observations in this material. It is concluded that the changes in rate controlling creep parameters are associated with the operation of two distinct sequential mechanisms as part of a grain boundary sliding process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thickness tapered laminates obtained by terminating a certain number of plies contain resin-rich areas called ‘resin pockets’ near ply drops, where high stress concentrations exist. Study of the effects of ply drops and resin pockets on the tensile behaviour of tapered laminates considering certain important parameters like taper angle, the number of plies dropped, and the fiber orientation is reported here. Estimation of the tensile strength of tapered laminates necessitates accurate determination of the state of stress near the ply-drop region, which is, in general, three-dimensional (3-D) in nature. Recognising the fact that full 3-D finite-element analysis becomes computationally exorbitant, special layered 3-D finite-element analysis is carried out. Laminates with ply drops along only one direction are analysed to elicit the nature of the local bending effects occurring near the ply drops. Complete 3-D Tsai–Wu criterion considering all the six stress components is used to obtain a quick and comparative assessment of the tensile strength of these laminates. High stress concentration zones are identified and the effects of number of plies dropped at a station and resin pocket geometry are illustrated. The mechanism of load transfer near ply drops and the local bending that occurs are described. Susceptibility of ply drop zones to the onset and subsequent growth of delaminations is also brought out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified lattice model using finite element method has been developed to study the mode-I fracture analysis of heterogeneous materials like concrete. In this model, the truss members always join at points where aggregates are located which are modeled as plane stress triangular elements. The truss members are given the properties of cement mortar matrix randomly, so as to represent the randomness of strength in concrete. It is widely accepted that the fracture of concrete structures should not be based on strength criterion alone, but should be coupled with energy criterion. Here, by incorporating the strain softening through a parameter ‘α’, the energy concept is introduced. The softening branch of load-displacement curves was successfully obtained. From the sensitivity study, it was observed that the maximum load of a beam is most sensitive to the tensile strength of mortar. It is seen that by varying the values of properties of mortar according to a normal random distribution, better results can be obtained for load-displacement diagram.