148 resultados para electron density ratio
Resumo:
A generalized explanation is provided for the existence of the red-and blue-shifting nature of X-Z bonds (Z = H, halogens, chalcogens, pnicogens, etc.) in X-Z center dot center dot center dot Y complexes based on computational studies on a selected set of weakly bonded complexes and analysis of existing literature data. The additional electrons and orbitals available on Z in comparison to H make for dramatic differences between the H-bond and the rest of the Z-bonds. The nature of the X-group and its influence on the X-Z bond length in the parent X-Z molecule largely controls the change in the X-Z bond length on X-Z center dot center dot center dot Y bond formation; the Y-group usually influences only the magnitude of the effects controlled by X. The major factors which control the X-Z bond length change are: (a) negative hyperconjugative donation of electron density from X-group to X-Z sigma* antibonding molecular orbital (ABMO) in the parent X-Z, (b) induced negative hyperconjugation from the lone pair of electrons on Z to the antibonding orbitals of the X-group, and (c) charge transfer (CT) from the Y-group to the X-Z sigma* orbital. The exchange repulsion from the Y-group that shifts partial electron density at the X-Z sigma* ABMO back to X leads to blue-shifting and the CT from the Y-group to the sigma* ABMO of X-Z leads to red-shifting. The balance between these two opposing forces decides red-, zero- or blue-shifting. A continuum of behaviour of X-Z bond length variation is inevitable in X-Z center dot center dot center dot Y complexes.
Resumo:
In this discussion, we show that a static definition of a `bond' is not viable by looking at a few examples for both inter-and intra-molecular hydrogen bonding. This follows from our earlier work (Goswami and Arunan, Phys. Chem. Chem. Phys. 2009, 11, 8974) which showed a practical way to differentiate `hydrogen bonding' from `van der Waals interaction'. We report results from ab initio and atoms in molecules theoretical calculations for a series of Rg center dot center dot center dot HX complexes (Rg = He/Ne/Ar and X = F/Cl/Br) and ethane-1,2-diol. Results for the Rg center dot center dot center dot HX/DX complexes show that Rg center dot center dot center dot DX could have a `deuterium bond' even when Rg center dot center dot center dot HX is not `hydrogen bonded', according to the practical criterion given by Goswami and Arunan. Results for ethane-1,2-diol show that an `intra-molecular hydrogen bond' can appear during a normal mode vibration which is dominated by the O center dot center dot center dot O stretching, though a `bond' is not found in the equilibrium structure. This dynamical `bond' formation may nevertheless be important in ensuring the continuity of electron density across a molecule. In the former case, a vibration `breaks' an existing bond and in the later case, a vibration leads to `bond' formation. In both cases, the molecule/complex stays bound irrespective of what happens to this `hydrogen bond'. Both these cases push the borders on the recent IUPAC recommendation on hydrogen bonding (Arunan et al. Pure. Appl. Chem. 2011, 83 1637) and justify the inclusive nature of the definition.
Resumo:
Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se center dot center dot center dot O chalcogen bonds that lead to conserved supramolecular recognition units. Se center dot center dot center dot O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se center dot center dot center dot O chalcogen bonds were explored using high-resolution X-ray charge density analysis and atons-in-molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se center dot center dot center dot O chalcogen bonding and soft-metal-like behavior of organoselenium. An analysis of the charge density around Se-N and Se-C covalent bonds in conjunction with the Se center dot center dot center dot O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se center dot center dot center dot O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS).
Resumo:
We investigated the nature of the cohesive energy between graphane sheets via multiple CH center dot center dot center dot HC interactions, using density functional theory (DFT) including dispersion correction (Grimmes D3 approach) computations of n]graphane sigma dimers (n = 6-73). For comparison, we also evaluated the binding between graphene sheets that display prototypical pi/pi interactions. The results were analyzed using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory. BLW interprets the intermolecular interactions in terms of frozen interaction energy (Delta E-F) composed of electrostatic and Pauli repulsion interactions, polarization (Delta E-pol), charge-transfer interaction (Delta E-CT), and dispersion effects (Delta E-disp). The BLW analysis reveals that the cohesive energy between graphane sheets is dominated by two stabilizing effects, namely intermolecular London dispersion and two-way charge transfer energy due to the sigma CH -> sigma*(HC) interactions. The shift of the electron density around the nonpolar covalent C-H bonds involved in the intermolecular interaction decreases the C-H bond lengths uniformly by 0.001 angstrom. The Delta E-CT term, which accounts for similar to 15% of the total binding energy, results in the accumulation of electron density in the interface area between two layers. This accumulated electron density thus acts as an electronic glue for the graphane layers and constitutes an important driving force in the self-association and stability of graphane under ambient conditions. Similarly, the double faced adhesive tape style of charge transfer interactions was also observed among graphene sheets in which it accounts for similar to 18% of the total binding energy. The binding energy between graphane sheets is additive and can be expressed as a sum of CH center dot center dot center dot HC interactions, or as a function of the number of C-H bonds.
Resumo:
The issue of growth rate reduction of high speed mixing layer with convective Mach number is examined for similar and dissimilar gases using Reynolds averaged Navier-Stokes (RANS) methodology with k- turbulence model. It is observed that the growth rate predicted using RANS simulations closely matches with that predicted using model free simulations. Velocity profiles do not depend on the modelled value of Pr-t and Sc-t; while the temperature and species mass fraction distributions depend heavily on them. Although basic k- turbulence model could not capture the reduced growth rate for the mixing layer formed between similar gases, it predicts very well the reduced growth rate for the mixing layer for the dissimilar gases. It appears that density ratio changes caused by temperature changes for the dissimilar gases have profound effect on the growth rate reduction.
Resumo:
Crystal structure of a lectin purified from Butea monosperma seeds was determined by Molecular Replacement method. Its primary structure was determined by Tandem Mass Spectroscopy and electron density maps from X-ray diffraction data. Its quaternary structure was tetrameric, formed of two monomers, alpha and beta, beta appearing as truncated alpha. The occurrence of two tetramers in the asymmetric unit of the crystal might be a consequence of asymmetric contacts due to difference in glycosylation and variable loops structures, to form an `octamer-structure'. The crystal structure showed binding pockets for gamma Abu, having a proposed role in plant defense, at the interface of canonical dimer-partners. Hemagglutination studies, enzyme kinetics, isothermal titration calorimetry and molecular dynamics showed that the lectin is specific to N-acetyl D-galactosamine, galactose and lactose in decreasing order, and alpha-amylase inhibitor. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Computational study of X-Ha <-C and C-Ha <-X hydrogen bonds in n-alkane-HX complexes (X =F,OH, alkane =propane, butane, pentane) has been carried out in this work. Ab initio and density functional theories were used for this study. For n-alkane-H2O complexes both Oa <-H-C and O-Ha <-C hydrogen bonded complex have been found, while for n-alkane-HF complexes, our attempt to optimize Fa <-H-C H-bond was not successful. Like most of the hydrogen bonded systems, strong correlation between binding energy and stretching frequency of H-F and O-H stretching mode was observed. The values of electron density and Laplacian of electron density are within the accepted range for hydrogen bonds. In all these cases, X-Ha <-C hydrogen bonds are found to be stronger than C-Ha <-X hydrogen bonds.
Resumo:
Purpose: Composition of the coronary artery plaque is known to have critical role in heart attack. While calcified plaque can easily be diagnosed by conventional CT, it fails to distinguish between fibrous and lipid rich plaques. In the present paper, the authors discuss the experimental techniques and obtain a numerical algorithm by which the electron density (rho(e)) and the effective atomic number (Z(eff)) can be obtained from the dual energy computed tomography (DECT) data. The idea is to use this inversion method to characterize and distinguish between the lipid and fibrous coronary artery plaques. Methods: For the purpose of calibration of the CT machine, the authors prepare aqueous samples whose calculated values of (rho(e), Z(eff)) lie in the range of (2.65 x 10(23) <= rho(e) <= 3.64 x 10(23)/cm(3)) and (6.80 <= Z(eff) <= 8.90). The authors fill the phantom with these known samples and experimentally determine HU(V-1) and HU(V-2), with V-1,V-2 = 100 and 140 kVp, for the same pixels and thus determine the coefficients of inversion that allow us to determine (rho(e), Z(eff)) from the DECT data. The HU(100) and HU(140) for the coronary artery plaque are obtained by filling the channel of the coronary artery with a viscous solution of methyl cellulose in water, containing 2% contrast. These (rho(e), Z(eff)) values of the coronary artery plaque are used for their characterization on the basis of theoretical models of atomic compositions of the plaque materials. These results are compared with histopathological report. Results: The authors find that the calibration gives Pc with an accuracy of 3.5% while Z(eff) is found within 1% of the actual value, the confidence being 95%. The HU(100) and HU(140) are found to be considerably different for the same plaque at the same position and there is a linear trend between these two HU values. It is noted that pure lipid type plaques are practically nonexistent, and microcalcification, as observed in histopathology, has to be taken into account to explain the nature of the observed (rho(e), Z(eff)) data. This also enables us to judge the composition of the plaque in terms of basic model which considers the plaque to be composed of fibres, lipids, and microcalcification. Conclusions: This simple and reliable method has the potential as an effective modality to investigate the composition of noncalcified coronary artery plaques and thus help in their characterization. In this inversion method, (rho(e), Z(eff)) of the scanned sample can be found by eliminating the effects of the CT machine and also by ensuring that the determination of the two unknowns (rho(e), Z(eff)) does not interfere with each other and the nature of the plaque can be identified in terms of a three component model. (C) 2015 American Association of Physicists in Medicine.
Resumo:
Graphene was produced by electrochemical exfoliation of a used battery electrode. Aqueous solutions of cationic (cetyltrimethylammonium bromide), anionic (sodium dodecyl sulphate), and nonionic (poly vinyl pyrrolidone) surfactants, along with NaCl and combinations of these surfactants with NaCl, were used as the electrolyte. The following observations were made: (I) up to several micrometer sized graphene sheets were produced, (II) the addition of NaCl into the electrolytes significantly enhanced the yield of the exfoliated graphene, (III) the type of surfactant affected the defect density of the exfoliated product, and (IV) electrochemical impedance spectroscopy provided insight into the reason for the changes in the defect density ratio between the graphene samples.
Resumo:
The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T-1 and T-2 states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S-0 state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S-0, T-1, and T-2 states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the n pi* triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents. (C) 2016 AIP Publishing LLC.
Resumo:
Using Huxley's solution of the diffusion equation for electron-attaching gases, the ratio of diffusion coefficient D to mobility μ for electrons in dry air was measured over the range 3·06 × 10-17
Resumo:
By using the bender and extender elements tests, together with measurements of the travel times of shear (S) and primary (P) waves, the variation of Poisson ratio (nu) was determined for dry sands with respect to changes in relative densities and effective confining pressures (sigma(3)). The tests were performed for three different ranges of particle sizes. The magnitude of the Poisson ratio decreases invariably with an increase in both the relative density and the effective confining pressure. The effect of the confining pressure on the Poisson ratio was found to become relatively more significant for fine-grained sand as compared with the coarse-grained sand. For a given material, at a particular value of sigma(3), the magnitude of the Poisson ratio decreases, almost in a linear fashion, with an increase in the value of maximum shear modulus (G(max)). The two widely used correlations in literature, providing the relationships among G(max), void ratio (e) and effective confining pressure (sigma(3)), applicable for angular granular materials, were found to compare reasonably well with the present experimental data for the fine- and medium-grained sands. However, for the coarse-grained sand, these correlations tend to overestimate the values of G(max).
Resumo:
Post-irradiation studies have been carried out to elucidate the effects of electron beam irradiation on the structural, optical, dielectric, and thermal properties of high-density polyethylene (HDPE) films. The experimental results showed that both the optical band gap and activation energy of HDPE films decreases with an increase in the doses of electron radiation. The electrical measurements showed that dielectric constant and the ac conductivity of HDPE increases with an increase in the dose of electron radiation. The thermal analysis carried out using DSC and TGA revealed that the melting temperature, degree of crystallinity, and thermal stability of the HDPE films increased, obviously, due to the predominant cross-linking reaction following high doses of electron irradiation.
Resumo:
GaN films were grown on c-plane sapphire by plasma-assisted molecular beam epitaxy (PAMBE). The effect of N/Ga flux ratio on structural, morphological, and optical properties was studied. The dislocation density found to increase with increasing the N/Ga ratio. The surface morphology of the films as seen by scanning electron microscopy shows pits on the surface and found that the pit density on the surface increases with N/Ga ratio. The room temperature photoluminescence study reveals the shift in band-edge emission toward the lower energy with increase in N/Ga ratio. This is believed to arise from the reduction in compressive stress in the films as is evidenced by room temperature Raman study. The transport studied on the Pt/GaN Schottky diodes showed a significant increase in leakage current with an increase in N/Ga ratio and was found to be caused by the increase in pit density as well as increase in dislocation density in the GaN films. (C) 2011 American Institute of Physics. [doi:10.1063/1.3634116]
Resumo:
We investigate the effect of static electron-phonon coupling on real-time dynamics of spin and charge transport in pi-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter t(0)(1 + delta) for short bonds and t(0)(1 - delta) for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent density matrix renormalization group technique when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities depend both on chain length and extent of dimerization delta. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 <= delta <= 0.15, spin-charge dynamics is found to have a well-defined behavior, with spin-charge separation (measured as the ratio of charge velocity to spin velocity) as well as the total amount of charge and spin transported in a given time along the chain decreasing as dimerization increases. However, in the range 0.3 <= delta <= 0.5, it is observed that the dynamics of spin and charge transport becomes complicated. It is observed that, for large delta values, spin-charge separation is suppressed and the injected hole fails to travel the entire length of the chain.