77 resultados para drainage basins


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed study on the postliquefaction undrained shear behavior of sand-silt mixtures at constant void ratios is presented in this article. The influence of different parameters such as density, amplitude of cyclic shear stress, and drainage conditions on the postliquefaction undrained response of sand-silt mixtures has been investigated, in addition to the effect of fines content. The results showed that the limiting silt content plays a vital role in the strength of the soil under both cyclic and monotonic shear loading. Both the liquefaction resistance and postliquefaction shear strength of the soils are found to decrease with an increase in the fines content until the limiting silt content is reached. However, further increase in the silt content beyond the limiting silt content increases the liquefaction resistance as well as the postliquefaction shear strength of the soils. It is also observed that these variations on the liquefaction and postliquefaction resistance of soils are closely related to the variations in relative density. (C) 2013 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two multicriterion decision-making methods, namely `compromise programming' and the `technique for order preference by similarity to an ideal solution' are employed to prioritise 22 micro-catchments (A1 to A22) of Kherthal catchment, Rajasthan, India and comparative analysis is performed using the compound parameter approach. Seven criteria - drainage density, bifurcation ratio, stream frequency, form factor, elongation ratio, circulatory ratio and texture ratio - are chosen for the evaluation. The entropy method is employed to estimate weights or relative importance of the criterion which ultimately affects the ranking pattern or prioritisation of micro-catchments. Spearman rank correlation coefficients are estimated to measure the extent to which the ranks obtained are correlated. Based on the average ranking approach supported by sensitivity analysis, micro-catchments A6, A10, A3 are preferred (owing to their low ranking) for further improvements with suitable conservation and management practices, and other micro-catchments can be processed accordingly at a later phase on a priority basis. It is concluded that the present approach can be explored for other similar situations with appropriate modifications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change impact on a groundwater-dependent small urban town has been investigated in the semiarid hard rock aquifer in southern India. A distributed groundwater model was used to simulate the groundwater levels in the study region for the projected future rainfall (2012-32) obtained from a general circulation model (GCM) to estimate the impacts of climate change and management practices on groundwater system. Management practices were based on the human-induced changes on the urban infrastructure such as reduced recharge from the lakes, reduced recharge from water and wastewater utility due to an operational and functioning underground drainage system, and additional water extracted by the water utility for domestic purposes. An assessment of impacts on the groundwater levels was carried out by calibrating a groundwater model using comprehensive data gathered during the period 2008-11 and then simulating the future groundwater level changes using rainfall from six GCMs Institute of Numerical Mathematics Coupled Model, version 3.0 (INM-CM. 3.0); L'Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL-CM4); Model for Interdisciplinary Research on Climate, version 3.2 (MIROC3.2); ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G); Hadley Centre Coupled Model, version 3 (HadCM3); and Hadley Centre Global Environment Model, version 1 (HadGEM1)] that were found to show good correlation to the historical rainfall in the study area. The model results for the present condition indicate that the annual average discharge (sum of pumping and natural groundwater outflow) was marginally or moderately higher at various locations than the recharge and further the recharge is aided from the recharge from the lakes. Model simulations showed that groundwater levels were vulnerable to the GCM rainfall and a scenario of moderate reduction in recharge from lakes. Hence, it is important to sustain the induced recharge from lakes by ensuring that sufficient runoff water flows to these lakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estimation of design quantiles of hydrometeorological variables at critical locations in river basins is necessary for hydrological applications. To arrive at reliable estimates for locations (sites) where no or limited records are available, various regional frequency analysis (RFA) procedures have been developed over the past five decades. The most widely used procedure is based on index-flood approach and L-moments. It assumes that values of scale and shape parameters of frequency distribution are identical across all the sites in a homogeneous region. In real-world scenario, this assumption may not be valid even if a region is statistically homogeneous. To address this issue, a novel mathematical approach is proposed. It involves (i) identification of an appropriate frequency distribution to fit the random variable being analyzed for homogeneous region, (ii) use of a proposed transformation mechanism to map observations of the variable from original space to a dimensionless space where the form of distribution does not change, and variation in values of its parameters is minimal across sites, (iii) construction of a growth curve in the dimensionless space, and (iv) mapping the curve to the original space for the target site by applying inverse transformation to arrive at required quantile(s) for the site. Effectiveness of the proposed approach (PA) in predicting quantiles for ungauged sites is demonstrated through Monte Carlo simulation experiments considering five frequency distributions that are widely used in RFA, and by case study on watersheds in conterminous United States. Results indicate that the PA outperforms methods based on index-flood approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amount of water stored and moving through the surface water bodies of large river basins (river, floodplains, wetlands) plays a major role in the global water and biochemical cycles and is a critical parameter for water resources management. However, the spatiotemporal variations of these freshwater reservoirs are still widely unknown at the global scale. Here, we propose a hypsographic curve approach to estimate surface freshwater storage variations over the Amazon basin combining surface water extent from a multi-satellite-technique with topographic data from the Global Digital Elevation Model (GDEM) from Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Monthly surface water storage variations for 1993-2007 are presented, showing a strong seasonal and interannual variability, and are evaluated against in situ river discharge and precipitation. The basin-scale mean annual amplitude of similar to 1200 km(3) is in the range of previous estimates and contributes to about half of the Gravity Recovery And Climate Experiment (GRACE) total water storage variations. For the first time, we map the surface water volume anomaly during the extreme droughts of 1997 (October-November) and 2005 (September-October) and found that during these dry events the water stored in the river and floodplains of the Amazon basin was, respectively, similar to 230 (similar to 40%) and 210 (similar to 50%) km(3) below the 1993-2007 average. This new 15 year data set of surface water volume represents an unprecedented source of information for future hydrological or climate modeling of the Amazon. It is also a first step toward the development of such database at the global scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective in this work is to develop downscaling methodologies to obtain a long time record of inundation extent at high spatial resolution based on the existing low spatial resolution results of the Global Inundation Extent from Multi-Satellites (GIEMS) dataset. In semiarid regions, high-spatial-resolution a priori information can be provided by visible and infrared observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). The study concentrates on the Inner Niger Delta where MODIS-derived inundation extent has been estimated at a 500-m resolution. The space-time variability is first analyzed using a principal component analysis (PCA). This is particularly effective to understand the inundation variability, interpolate in time, or fill in missing values. Two innovative methods are developed (linear regression and matrix inversion) both based on the PCA representation. These GIEMS downscaling techniques have been calibrated using the 500-m MODIS data. The downscaled fields show the expected space-time behaviors from MODIS. A 20-yr dataset of the inundation extent at 500 m is derived from this analysis for the Inner Niger Delta. The methods are very general and may be applied to many basins and to other variables than inundation, provided enough a priori high-spatial-resolution information is available. The derived high-spatial-resolution dataset will be used in the framework of the Surface Water Ocean Topography (SWOT) mission to develop and test the instrument simulator as well as to select the calibration validation sites (with high space-time inundation variability). In addition, once SWOT observations are available, the downscaled methodology will be calibrated on them in order to downscale the GIEMS datasets and to extend the SWOT benefits back in time to 1993.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We generalize the results of arXiv : 1212.1875 and arXiv : 1212.6919 on attraction basins and their boundaries to the case of a specific class of rotating black holes,namely the ergo-free branch of extremal black holes in Kaluza-Klein theory. We find that exact solutions that span the attraction basin can be found even in the rotating case by appealing to certain symmetries of the equations of motion. They are characterized by two asymptotic parameters that generalize those of the non-rotating case, and the boundaries of the basin are spinning versions of the (generalized) subtractor geometry. We also give examples to illustrate that the shape of the attraction basin can drastically change depending on the theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eleven GCMs (BCCR-BCCM2.0, INGV-ECHAM4, GFDL2.0, GFDL2.1, GISS, IPSL-CM4, MIROC3, MRI-CGCM2, NCAR-PCMI, UKMO-HADCM3 and UKMO-HADGEM1) were evaluated for India (covering 73 grid points of 2.5 degrees x 2.5 degrees) for the climate variable `precipitation rate' using 5 performance indicators. Performance indicators used were the correlation coefficient, normalised root mean square error, absolute normalised mean bias error, average absolute relative error and skill score. We used a nested bias correction methodology to remove the systematic biases in GCM simulations. The Entropy method was employed to obtain weights of these 5 indicators. Ranks of the 11 GCMs were obtained through a multicriterion decision-making outranking method, PROMETHEE-2 (Preference Ranking Organisation Method of Enrichment Evaluation). An equal weight scenario (assigning 0.2 weight for each indicator) was also used to rank the GCMs. An effort was also made to rank GCMs for 4 river basins (Godavari, Krishna, Mahanadi and Cauvery) in peninsular India. The upper Malaprabha catchment in Karnataka, India, was chosen to demonstrate the Entropy and PROMETHEE-2 methods. The Spearman rank correlation coefficient was employed to assess the association between the ranking patterns. Our results suggest that the ensemble of GFDL2.0, MIROC3, BCCR-BCCM2.0, UKMO-HADCM3, MPIECHAM4 and UKMO-HADGEM1 is suitable for India. The methodology proposed can be extended to rank GCMs for any selected region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative use of satellite-derived rainfall products for various scientific applications often requires them to be accompanied with an error estimate. Rainfall estimates inferred from low earth orbiting satellites like the Tropical Rainfall Measuring Mission (TRMM) will be subjected to sampling errors of nonnegligible proportions owing to the narrow swath of satellite sensors coupled with a lack of continuous coverage due to infrequent satellite visits. The authors investigate sampling uncertainty of seasonal rainfall estimates from the active sensor of TRMM, namely, Precipitation Radar (PR), based on 11 years of PR 2A25 data product over the Indian subcontinent. In this paper, a statistical bootstrap technique is investigated to estimate the relative sampling errors using the PR data themselves. Results verify power law scaling characteristics of relative sampling errors with respect to space-time scale of measurement. Sampling uncertainty estimates for mean seasonal rainfall were found to exhibit seasonal variations. To give a practical example of the implications of the bootstrap technique, PR relative sampling errors over a subtropical river basin of Mahanadi, India, are examined. Results reveal that the bootstrap technique incurs relative sampling errors < 33% (for the 2 degrees grid), < 36% (for the 1 degrees grid), < 45% (for the 0.5 degrees grid), and < 57% (for the 0.25 degrees grid). With respect to rainfall type, overall sampling uncertainty was found to be dominated by sampling uncertainty due to stratiform rainfall over the basin. The study compares resulting error estimates to those obtained from latin hypercube sampling. Based on this study, the authors conclude that the bootstrap approach can be successfully used for ascertaining relative sampling errors offered by TRMM-like satellites over gauged or ungauged basins lacking in situ validation data. This technique has wider implications for decision making before incorporating microwave orbital data products in basin-scale hydrologic modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regional frequency analysis is widely used for estimating quantiles of hydrological extreme events at sparsely gauged/ungauged target sites in river basins. It involves identification of a region (group of watersheds) resembling watershed of the target site, and use of information pooled from the region to estimate quantile for the target site. In the analysis, watershed of the target site is assumed to completely resemble watersheds in the identified region in terms of mechanism underlying generation of extreme event. In reality, it is rare to find watersheds that completely resemble each other. Fuzzy clustering approach can account for partial resemblance of watersheds and yield region(s) for the target site. Formation of regions and quantile estimation requires discerning information from fuzzy-membership matrix obtained based on the approach. Practitioners often defuzzify the matrix to form disjoint clusters (regions) and use them as the basis for quantile estimation. The defuzzification approach (DFA) results in loss of information discerned on partial resemblance of watersheds. The lost information cannot be utilized in quantile estimation, owing to which the estimates could have significant error. To avert the loss of information, a threshold strategy (TS) was considered in some prior studies. In this study, it is analytically shown that the strategy results in under-prediction of quantiles. To address this, a mathematical approach is proposed in this study and its effectiveness in estimating flood quantiles relative to DFA and TS is demonstrated through Monte-Carlo simulation experiments and case study on Mid-Atlantic water resources region, USA. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eleven general circulation models/global climate models (GCMs) - BCCR-BCCM2.0, INGV-ECHAM4, GFDL2.0, GFDL2.1, GISS, IPSL-CM4, MIROC3, MRI-CGCM2, NCAR-PCMI, UKMO-HADCM3 and UKMO-HADGEM1 - are evaluated for Indian climate conditions using the performance indicator, skill score (SS). Two climate variables, temperature T (at three levels, i.e. 500, 700, 850 mb) and precipitation rate (Pr) are considered resulting in four SS-based evaluation criteria (T500, T700, T850, Pr). The multicriterion decision-making method, technique for order preference by similarity to an ideal solution, is applied to rank 11 GCMs. Efforts are made to rank GCMs for the Upper Malaprabha catchment and two river basins, namely, Krishna and Mahanadi (covered by 17 and 15 grids of size 2.5 degrees x 2.5 degrees, respectively). Similar efforts are also made for India (covered by 73 grid points of size 2.5 degrees x 2.5 degrees) for which an ensemble of GFDL2.0, INGV-ECHAM4, UKMO-HADCM3, MIROC3, BCCR-BCCM2.0 and GFDL2.1 is found to be suitable. It is concluded that the proposed methodology can be applied to similar situations with ease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study concerns the relationship between the power law recession coefficient k (in - dQ/dt = kQ(alpha), Q being discharge at the basin outlet) and past average discharge Q(N) (where N is the temporal distance from the center of the selected time span in the past to the recession peak), which serves as a proxy for past storage state of the basin. The strength of the k-Q(N) relationship is characterized by the coefficient of determination R-N(2), which is expected to indicate the basin's ability to hold water for N days. The main objective of this study is to examine how R-N(2) value of a basin is related with its physical characteristics. For this purpose, we use streamflow data from 358 basins in the United States and selected 18 physical parameters for each basin. First, we transform the physical parameters into mutually independent principal components. Then we employ multiple linear regression method to construct a model of R-N(2) in terms of the principal components. Furthermore, we employ step-wise multiple linear regression method to identify the dominant catchment characteristics that influence R-N(2) and their directions of influence. Our results indicate that R-N(2) is appreciably related to catchment characteristics. Particularly, it is noteworthy that the coefficient of determination of the relationship between R-N(2) and the catchment characteristics is 0.643 for N = 45. We found that topographical characteristics of a basin are the most dominant factors in controlling the value of R-N(2). Our results may be suggesting that it is possible to tell about the water holding capacity of a basin by just knowing about a few of its physical characteristics. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modeled using a calibrated variable infiltration capacity (VIC) hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over the streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban areas and moderately sensitive to change in cropland areas. However, variations in streamflow generally reproduce the variations in precipitation. The combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this paper is applicable to any river basin to isolate the impacts of land use change and climate change on the streamflow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the development and application of a stochastic dynamic programming model with fuzzy state variables for irrigation of multiple crops. A fuzzy stochastic dynamic programming (FSDP) model is developed in which the reservoir storage and soil moisture of the crops are considered as fuzzy numbers, and the reservoir inflow is considered as a stochastic variable. The model is formulated with an objective of minimizing crop yield deficits, resulting in optimal water allocations to the crops by maintaining storage continuity and soil moisture balance. The standard fuzzy arithmetic method is used to solve all arithmetic equations with fuzzy numbers, and the fuzzy ranking method is used to compare two or more fuzzy numbers. The reservoir operation model is integrated with a daily-based water allocation model, which results in daily temporal variations of allocated water, soil moisture, and crop deficits. A case study of an existing Bhadra reservoir in Karnataka, India, is chosen for the model application. The FSDP is a more realistic model because it considers the uncertainty in discretization of state variables. The results obtained using the FSDP model are found to be more acceptable for the case study than those of the classical stochastic dynamic model and the standard operating model, in terms of 10-day releases from the reservoir and evapotranspiration deficit. (C) 2015 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scaling approaches are widely used by hydrologists for Regional Frequency Analysis (RFA) of floods at ungauged/sparsely gauged site(s) in river basins. This paper proposes a Recursive Multi-scaling (RMS) approach to RFA that overcomes limitations of conventional simple- and multi-scaling approaches. The approach involves identification of a separate set of attributes corresponding to each of the sites (being considered in the study area/region) in a recursive manner according to their importance, and utilizing those attributes to construct effective regional regression relationships to estimate statistical raw moments (SMs) of peak flows. The SMs are then utilized to arrive at parameters of flood frequency distribution and quantile estimate(s) corresponding to target return period(s). Effectiveness of the RMS approach in arriving at flood quantile estimates for ungauged sites is demonstrated through leave-one-out cross-validation experiment on watersheds in Indiana State, USA. Results indicate that the approach outperforms index-flood based Region-of-Influence approach, simple- and multi-scaling approaches and a multiple linear regression method. (C) 2015 Elsevier B.V. All rights reserved.