101 resultados para directed polymers in random environment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic polymeric electro-optic (E-O) materials have attracted significant attention because of their potential use as fast and efficient components of integrated photonic devices (1,2). However, the practical application of these materials in optical devices is somewhat limited by the stringent material requirements imposed by the device design, fabrication processes and operating environments. Among the various material requirements, the most notable ones are large electro-optic coefficients (r(33)) and high thermal stability (3). The design of poled polymeric materials with high electro-optic activity (r(33)) involves the optimization of the percent incorporation of efficient (large beta mu) second order nonlinear optical (NLO) chromophores into the polymer matrices and the effective creation of poling-induced non-centrosymmetric structures. The factors that affect the material stability are a) the inherent thermal stability of the NLO chromophores, b) the chemical stability of the NLO chromophores during the polymer processing conditions, and c) the long-term dipolar alignment stability at high temperatures. Although considerable progress has been made in achieving these properties (4), organic polymeric materials suitable for practical E-O device applications are yet to be developed. This chapter highlights some of our approaches in the optimization of molecular and material nonlinear optical and thermal properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal degradation of poly(methyl methacrylate) (PMMA) in the presence of polysulfide polymers, namely, poly( styrene disulfide) (PSD) and poly(styrene tetrasulfide) (PST) was studied using thermogravimetry (TG) and direct pyrolysis-mass spectrometric (DP-MS) analysis. Both PSD and PST were found to stabilizethe PMMA degradation, which was explained by both radical recombination and a chain-transfer mechanism. (C) 1997 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of logic synthesis is to produce circuits which satisfy the given boolean function while meeting timing constraints and requiring the minimum silicon area. Logic synthesis involves two steps namely logic decomposition and technology mapping. Existing methods treat the two as separate operation. The traditional approach is to minimize the number of literals without considering the target technology during the decomposition phase. The decomposed expressions are then mapped on to the target technology to optimize the area, Timing optimization is carried out subsequently, A new approach which treats logic decomposition and technology maping as a single operation is presented. The logic decomposition is based on the parameters of the target technology. The area and timing optimization is carried out during logic decomposition phase itself. Results using MCNC circuits are presented to show that this method produces circuits which are 38% faster while requiring 14% increase in area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show analytically that in dilute solutions of high molecular weight polymers, a collapse transition of the chain can be induced by proximity to the critical point of the solvent. The transition is driven by the fluctuations in the medium, which lead to an effective attractive interaction of long range between different parts of the polymer. At the critical point itself, however, the chain adopts the same average conformations that characterize its size in the off-critical limit. In other words, on approach to the critical point, the polymer is found first to contract and collapse, and then subsequently to return to its original dimensions. This behavior has recently been observed in simulations of polymer-solvent mixtures near the lower critical solution temperature of the system, and it is also known to be characteristic of solutions of polymers in bicomponent solvent mixtures near the critical consolute point of the two solvents. (C) 1999 American Institute of Physics. [S0021-9606(99)50431-5].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban lakes form vital ecosystems supporting livelihood with social, economic and aesthetic benefits that are essential for quality life. This depends on the biotic and abiotic components in an ecosystem. The structure of an ecosystem forms a decisive factor in sustaining its functional abilities which include nutrient cycling, oxygen production, etc. A community assemblage of primary producers (algae) plays a crucial role in maintaining the balance as they form the base of energy pyramid in the ecosystem. Algae assimilate carbon in the environment via photosynthetic activities and releases oxygen for the next level of biotic elements in an ecosystem. Besides these, algal cells rich in protein serve as food and feed, used as manure and for production of biofuels. Understanding algal photosynthetic dynamics helps in assessing the level of dissolved oxygen (DO), food (fish, etc.), waste assimilation, etc. Algal chlorophyll content, algal biomass, primary productivity and algal photosynthetic quotient are some of the parameters that help in assessing the status of urban lakes. Chlorophyll content gives a measure of the growth, spread and quantity of algae. Unplanned rapid urbanization in Bangalore in recent times has resulted in either disappearance of lake ecosystems or deteriorated the lake water quality impairing the ecological processes. This paper computes algal growth, community structure, primary productivity and composition for three major lakes (T G Halli, Bellandur and Varthur lakes) under contrast levels of anthropogenic influences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of biodegradable copolyesters was synthesized by the catalyst-free melt condensation of sorbitol with citric acid, tartaric acid, and sebacic acid. The resulting polymers were designated as poly(sorbitol citric sebacate) p(SCS)] and poly(sorbitol tartaric sebacate) p(STS)]. The synthesized polymers were characterized by Fourier transform infrared spectroscopy, H-1-NMR spectroscopy, and differential scanning calorimetry analysis. Porous spongelike scaffolds were prepared with a salt-leaching technique and characterized with scanning electron microscopy. Tensile testing of the p(SCS) and p(STS) polymers showed that they exhibited a wide range of mechanical properties. The Young's modulus and tensile strengths of the polymers ranged from 1.06 +/- 0.12 to 462.65 +/- 34.21 MPa and from 0.45 +/- 0.04 to 20.32 +/- 2.54 MPa, respectively. In vitro degradation studies were performed on disc-shaped polymer samples. The half-life of the polymers ranged from 0.54 to 38.52 days. The percentage hydration of the polymers was in the range 9.36 +/- 1.26 to 78.25 +/- 1.91, with sol contents of 2-14%. At any given polymer composition, the Young's modulus and tensile strength of p(SCS) was higher than that of p(STS), whereas the degradation rates of p(SCS) was lower than that of p(STS). This was attributed to the structural difference between the citric and tartaric monomers and to the degree of crosslinking. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 121: 2861-2869, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distinctive feature of the Nhecolandia, a sub-region of the Pantanal wetland in Brazil, is the presence of both saline and freshwater lakes. Saline lakes used to be attributed to a past and phase during the Pleistocene. However, recent studies have shown that saline and fresh water lakes are linked by a continuous water table, indicating that saline water could come from a contemporary concentration process. This concentration process could also be responsible for the large chemical variability of the waters observed in the area. A regional water sampling has been conducted in surface and sub-surface water and the water table, and the results of the geochemical and statistical analysis are presented. Based on sodium contents, the concentration shows a 1: 4443 ratio. All the samples belong to the same chemical family and evolve in a sodic alkaline manner. Calcite or magnesian calcite precipitates very early in the process of concentration, probably followed by the precipitation of magnesian silicates. The most concentrated solutions remain under-saturated with respect to the sodium carbonate salt, even if this equilibrium is likely reached around the saline lakes. Apparently, significant amounts of sulfate and chloride are lost simultaneously from the solutions, and this cannot be explained solely by evaporative concentration. This could be attributed to the sorption on reduced minerals in a green sub-surface horizon in the "cordilhieira" areas. In the saline lakes, low potassium, phosphate, magnesium, and sulfate are attributed to algal blooms. Under the influence of evaporation, the concentration of solutions and associated chemical precipitations are identified as the main factors responsible for the geochemical variability in this environment (about 92 % of the variance). Therefore, the saline lakes of Nhecolandia have to be managed as landscape units in equilibrium with the present water flows and not inherited from a past and phase. In order to elaborate hydrochemical tracers for a quantitative estimation of water flows, three points have to be investigated more precisely: (1) the quantification of magnesium involved in the Mg-calcite precipitation; (2) the identification of the precise stoichiometry of the Mg-silicate; and (3) the verification of the loss of chloride and sulfate by sorption onto labile iron minerals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diethyl allyl phosphate (DEAP) monomer has been synthesized, and characterized, using H-1 NMR and direct ionization mass spectrometric (DI-MS) techniques. It was free-radically polymerized to yield the poly(diethyl allyl phosphate) (PDEAP). The direct pyrolysis-mass spectrometric (DP-MS) analysis of the PDEAP revealed that it undergoes thermal degradation to yield mainly the monomer. Utility of PDEAP as a potent flame-retardant additive in polystyrene (PS) and poly(methyl methacrylate) (PMMA) has also been established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-pressure MOCVD, with tris(2,4 pentanedionato)aluminum(III) as the precursor, was used in the present investigation to coat alumina on to cemented carbide cutting tools. To evaluate the MOCVD process, the efficiency in cutting operations of MOCVD-coated tools was compared with that of tools coated using the industry-standard CVD process.Three multilayer cemented carbide cutting tool inserts, viz., TiN/TiC/WC, CVD-coated Al2O3 on TiN/TiC/WC, and MOCVD-coated Al2O3 on TiN/TiC/WC, were compared in the dry turning of mild steel. Turning tests were conducted for cutting speeds ranging from 14 to 47 m/min, for a depth of cut from 0.25 to 1 mm, at the constant feed rate of 0.2 mm/min. The axial, tangential, and radial forces were measured using a lathe tool dynamometer for different cutting parameters, and the machined work pieces were tested for surface roughness. The results indicate that, in most of the cases examined, the MOCVD-coated inserts produced a smoother surface finish, while requiring lower cutting forces, indicating that MOCVD produces the best-performing insert, followed by the CVD-coated one. The superior performance of MOCVD-alumina is attributed to the co-deposition of carbon with the oxide, due to the very nature of the precursor used, leading to enhanced mechanical properties for cutting applications in harsh environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a synthesis of assessment of sustainable biomass production potential in six Asian countries-China, India, Malaysia, Philippines, Sri Lanka and Thailand, and is based on the detailed studies carried out in these countries under the Asian Regional Research Programme in Energy, Environment and Climate (ARRPEEC). National level studies were undertaken to estimate land availability for biomass production, identify and evaluate the biomass production options in terms of yield per hectare and financial viability, estimate sustainable biomass production for energy, and estimate the energy potential of biomass production in the six Asian countries. Sustainable biomass production from plantation is estimated to be in the range of 182.5-210.5, 62-310, 0.4-1.7, 3.7-20.4, 2.0-9.9 and 11.6-106.6 Mt yr(-1) for China, India, Malaysia, Philippines, Sri Lanka and Thailand, respectively. The maximum annual electricity generation potential, using advanced technologies, from the sustainable biomass production is estimated to be about 27, 114, 4.5, 79, 254 and 195 percentage of the total electricity generation in year 2000 in China, India, Malaysia, Philippines, Sri Lanka and Thailand, respectively. Investment cost for bioenergy production varies from US$381 to 1842 ha(-1) in the countries considered in this study; investment cost for production of biomass varies from US$5.1 to 23 t(-1). (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land-use changes influence local biodiversity directly, and also cumulatively, contribute to regional and global changes in natural systems and quality of life. Consequent to these, direct impacts on the natural resources that support the health and integrity of living beings are evident in recent times. The Western Ghats being one of the global biodiversity hotspots, is reeling under a tremendous pressure from human induced changes in terms of developmental projects like hydel or thermal power plants, big dams, mining activities, unplanned agricultural practices,monoculture plantations, illegal timber logging, etc. This has led to the once contiguous forest habitats to be fragmented in patches, which in turn has led to the shrinkage of original habitat for the wildlife, change in the hydrological regime of the catchment, decreased inflow in streams,human-animal conflicts, etc. Under such circumstances, a proper management practice is called for requiring suitable biological indicators to show the impact of these changes, set priority regions and in developing models for conservation planning. Amphibians are regarded as one of the best biological indicators due to their sensitivity to even the slightest changes in the environment and hence they could be used as surrogates in conservation and management practices. They are the predominating vertebrates with a high degree of endemism (78%) in Western Ghats. The present study is an attempt to bring in the impacts of various land-uses on anuran distribution in three river basins. Sampling was carried out for amphibians during all seasons of 2003-2006 in basins of Sharavathi, Aghanashini and Bedthi. There are as many as 46 species in the region, one of which is new to science and nearly 59% of them are endemic to the Western Ghats. They belong to nine families, Dicroglossidae being represented by 14 species,followed by Rhacophoridae (9 species) and Ranidae (5 species). Species richness is high in Sharavathi river basin, with 36 species, followed by Bedthi 33 and Aghanashini 27. The impact of land-use changes, was investigated in the upper catchment of Sharavathi river basin. Species diversity indices, relative abundance values, percentage endemics gave clear indication of differences in each sub-catchment. Karl Pearson’s correlation coefficient (r) was calculated between species richness, endemics, environmental descriptors, land-use classes and fragmentation metrics. Principal component analysis was performed to depict the influence of these variables. Results show that sub-catchments with lesser percentage of forest, low canopy cover, higher amount of agricultural area, low rainfall have low species richness, less endemic species and abundant non-endemic species, whereas endemism, species richness and abundance of endemic species are more in the sub-catchments with high tree density, endemic trees, canopy cover, rainfall and lower amount of agriculture fields. This analysis aided in prioritising regions in the Sharavathi river basin for further conservation measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a problem of providing mean delay and average throughput guarantees in random access fading wireless channels using CSMA/CA algorithm. This problem becomes much more challenging when the scheduling is distributed as is the case in a typical local area wireless network. We model the CSMA network using a novel queueing network based approach. The optimal throughput per device and throughput optimal policy in an M device network is obtained. We provide a simple contention control algorithm that adapts the attempt probability based on the network load and obtain bounds for the packet transmission delay. The information we make use of is the number of devices in the network and the queue length (delayed) at each device. The proposed algorithms stay within the requirements of the IEEE 802.11 standard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular weight and polydispersity are two structural features of hyperbranched polymers that are difficult to control because of the statistical nature of the step-growth polycondensation of AB(2) type monomers; the statistical growth also causes the polydispersity index to increase with percent conversion (or molecular weight). We demonstrate that using controlled amounts of a specifically designed B(3) core, containing B-type functionality that are more reactive than those present in the AB(2) monomer, both the molecular weight and the polydispersity can be readily controlled; the PDI was shown to improve with increasing mole-fraction of the B(3) core while the polymer molecular weight showed an expected decrease. Incorporation of a ``clickable'' propargyl group in the B(3) core unit permitted the generation of a core-functionalizable hyperbranched polymer. Importantly, this clickable core, in combination with a recently developed AB(2) monomer, wherein the B-type groups are allyl ethers and A is an hydroxyl group, led to the generation of a hyperbranched polymer carrying orthogonally functionalizable core and peripheral groups, via a single-step melt polycondensation. Selective functionalization of the core and periphery using two different types of chromophores was achieved, and the occurrence of fluorescence resonance energy transfer (FRET) between the donor and acceptor chromophores was demonstrated.