133 resultados para direct legislation
Resumo:
The ability of Static Var Compensators (SVCs) to rapidly and continuously control reactive power in response to changing system conditions can result in the improvement of system stability and also increase the power transfer in the transmission system. This paper concerns the application of strategically located SVCs to enhance the transient stability limits and the direct evaluation of the effect of these SVCs on transient stability using a Structure Preserving Energy Function (SPEF). The SVC control system can be modelled from the steady- state control characteristic to accurately simulate its effect on transient stability. Treating the SVC as a voltage-dependent reactive power load leads to the derivation of a path-independent SPEF for the SVC. Case studies on a 10-machine test system using multiple SVCs illustrate the effects of SVCs on transient stability and its accurate prediction.
Resumo:
The coherent flame model uses the strain rate to predict reaction rate per unit flame surface area and some procedure that solves for the dynamics of flame surfaces to predict species distributions. The strainrate formula for the reaction rate is obtained from the analytical solution for a flame in a laminar, plane stagnation point flow. Here, the formula's effectiveness is examined by comparisons with data from a direct numerical simulation (DNS) of a round jetlike flow that undergoes transition to turbulence. Significant differences due to general flow features can be understood qualitatively: Model predictions are good in the braids between vortex rings, which are present in the near field of round jets, as the strain rate is extensional and reaction surfaces are isolated. In several other regions, the strain rate is compressive or flame surfaces are folded close together. There, the predictions are poor as the local flow no longer resembles the model flow. Quantitative comparisons showed some discrepancies. A modified, consistent application of the strain-rate solution did not show significant changes in the prediction of mean reaction rate distributions.
Resumo:
Results on the performance of a 25 cm(2) liquid-feed solid-polymer-electrolyte direct methanol fuel cell (SPE-DMFC), operating under near-ambient conditions, are reported. The SPE-DMFC can yield a maximum power density of c. 200 mW cm(-2) at 90 C while operating with 1 M aqueous methanol and oxygen under ambient pressure. While operating the SPE-DMFC under similar conditions with air, a maximum power density of ca. 100 mW cm(-2) is achieved. Analysis of the electrode reaction kinetics parameters on the methanol electrode suggests that the reaction mechanism for methanol oxidation remains invariant with temperature. Durability data on the SPE-DMFC at an operational current density of 100 mA cm(-2) have also been obtained.
Resumo:
The trans- and cis-stilbenes upon inclusion in NaY zeolite are thermally stable. Direct excitation and triplet sensitization results in geometric isomerization and the excited state behavior under these conditions are similar to that in solution. Upon direct excitation, a photostationary state consisting of 65% cis and 35% trans isomers is established. Triplet sensitization with 2-acetonaphthone gave a photostationary state consisting of 63% cis and 37% trans isomers. These numbers are similar to the ones obtained in solution. Thus, the presence of cations and the confined space within the zeolite have very little influence on the overall chemistry during direct and triplet sensitization. However, upon electron transfer sensitization with N-methylacridinium (NMA) as the sensitizer within NaY, isomerization from cis-stilbene radical cation to trans-stilbene occurs and the recombination of radical ions results in triplet stilbene. Prolonged irradiation gave a photostationary state (65% cis and 35% trans) similar to triplet sensitization. This behavior is unique to the zeolite and does not take place in solution. Steady state fluorescence measurements showed that the majority of stilbene molecules are close to the N-methylacridinium sensitizer. Diffuse reflectance flash photolysis studies established that independent of the isomer being sensitized only trans radical cation is formed. Triplet stilbene is believed to be generated via recombination of stilbene radical cation and sensitizer radical anion. One should be careful in using acidic HY zeolite as a medium for photoisomerization of stilbenes. In our hands, in these acidic zeolites isomerization dominated the photoisomerization. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper presents a new approach by making use of a hybrid method of using the displacement discontinuity element method and direct boundary element method to model concrete cracking by incorporating fictitious crack model. Fracture mechanics approach is followed using the Hillerborg's fictitious crack model. A boundary element based substructure method and a hybrid technique of using displacement discontinuity element method and direct boundary element method are compared in this paper. In order to represent the process zone ahead of the crack, closing forces are assumed to act in such a way that they obey a linear normal stress-crack opening displacement law. Plain concrete beams with and without initial crack under three-point loading were analyzed by both the methods. The numerical results obtained were shown to agree well with the results from existing finite element method. The model is capable of reproducing the whole range of load-deflection response including strain-softening and snap-back behavior as illustrated in the numerical examples. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This is the first report on the analysis of random block polysulfide copolymers containing different amounts of repeating units in the copolymer backbone, which has been studied by direct pyrolysis mass spectrometry (DPMS) and by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The homopolymers such as poly(ethylene sulfide) (PES), poly(styrene sulfide) (PSS), and two random copolymers, viz., poly(ethylene sulfide(x)-co-styrene sulfide(y)) [copolymer I (x = y = 0.5) and copolymer II (x = 0.74, y = 0.26)] were investigated by both DPMS and Py-GC/MS (except copolymer II) techniques. In the case of copolymer I, the thermal degradation products of SE1, SE2, S-2, and S2E (S = styrene sulfide, E = ethylene sulfide) were detected in DPMS, whereas the formation of SE1 and SE2 were observed by Py-GC/MS technique. However, for copolymer II, SE3 was also found along with SE1, SE2, S-2, and S2E in DPMS. The formation of additional product (SE3) observed in copolymer II could be due to an increase in the block length formed during copolymerization. Further, a comparative study on thermal degradation of PES, poly(ethylene disulfide) (PEDS), and poly(ethylene tetrasulfide) (PETS) were investigated by Py-GC/MS. The pyrolysis products detected by both DPMS and Py-GC/MS indicates that the thermal decomposition of these polymers yield cyclic sulfides through an intramolecular exchange or by backbiting processes. The linear products with thiol and vinyl groups were also observed by Py-GC/MS along with the cyclic products via carbon hydrogen transfer reaction.
Resumo:
A pseudo-spectral method based on Fourier expansions in a Cartesian coordinate system is shown to be an economical method for direct numerical simulation studies of transitional round jets, Several characteristics of the solutions are presented to establish the validity of the solutions in spite of the unnatural choices. We show that neither periodicity, nor the use of a Cartesian system have adversely affected the simulations, Instead, there are benefits in terms of ease of computing and lack of the usual restrictions due to grid structure near the jet axis. By computing the simultaneous evolution of passive scalers, the process of reaction in round jet burners, between a fuel-laden jet and an ambient oxidizer, was also simulated. Some typical solutions are shown and then the results of analysis of these data are summarized. (C) 2001 Elsevier Science Ltd, All rights reserved.
Direct measurement of phase of foreward-scattered light using polarization heterodyne interferometer
Resumo:
We describe direct measurement of phase of ballistic photons transmitted through objects hidden in a turbid medium using a polarization interferometer employing a rotating analyzer. The unwrapped phase difference measurements from interferometry was possible for medium levels of turbidity and accurate phase measurement from the sinusoidal intensity was not detectable when l/l* is increased beyond 4.3. The measured phase on reconstruction using standard tomographic algorithms resulted in the recovery of the refractive index profile of the object hidden in the turbid medium.
Resumo:
A group of high-order finite-difference schemes for incompressible flow was implemented to simulate the evolution of turbulent spots in channel flows. The long-time accuracy of these schemes was tested by comparing the evolution of small disturbances to a plane channel flow against the growth rate predicted by linear theory. When the perturbation is the unstable eigenfunction at a Reynolds number of 7500, the solution grows only if there are a comparatively large number of (equispaced) grid points across the channel. Fifth-order upwind biasing of convection terms is found to be worse than second-order central differencing. But, for a decaying mode at a Reynolds number of 1000, about a fourth of the points suffice to obtain the correct decay rate. We show that this is due to the comparatively high gradients in the unstable eigenfunction near the walls. So, high-wave-number dissipation of the high-order upwind biasing degrades the solution especially. But for a well-resolved calculation, the weak dissipation does not degrade solutions even over the very long times (O(100)) computed in these tests. Some new solutions of spot evolution in Couette flows with pressure gradients are presented. The approach to self-similarity at long times can be seen readily in contour plots.
Resumo:
A self-supported 40W Direct Methanol Fuel Cell (DMFC) system has been developed and performance tested. The auxiliaries in the DMFC system comprise a methanol sensor, a liquid-level indicator, and fuel and air pumps that consume a total power of about 5W. The system has a 15-cell DMFC stack with active electrode-area of 45 cm(2). The self-supported DMFC system addresses issues related to water recovery from the cathode exhaust, and maintains a constant methanol-feed concentration with thermal management in the system. Pure methanol and water from cathode exhaust are pumped to the methanol-mixing tank where the liquid level is monitored and controlled with the help of a liquid-level indicator. During the operation, methanol concentration in the feed solution at the stack outlet is monitored using a methanol sensor, and pure methanol is added to restore the desired methanol concentration in the feed tank by adding the product water from the cathode exhaust. The feed-rate requirements of fuel and oxidant are designed for the stack capacity of 40W. The self-supported DMFC system is ideally suited for various defense and civil applications and, in particular, for charging the storage batteries.