94 resultados para direct healthcare cost
Resumo:
Assuming an entropic origin for phason elasticity in quasicrystals, we derive predictions for the temperature dependence of grain-boundary structure and free energy, the nature of the elastic instability in these systems, and the behavior of sound damping near the instability. We believe that these will provide decisive tests of the entropic model for quasicrystals.
Resumo:
Heat exchanger design is a complex task involving the selection of a large number of interdependent design parameters. There are no established general techniques for optimizing the design, though a few earlier attempts provide computer software based on gradient methods, case study methods, etc. The authors felt that it would be useful to determine the nature of the optimal and near-optimal feasible designs to devise an optimization technique. Therefore, in this article they have obtained a large number of feasible designs of shell and tube heat exchangers, intended to perform a given heat duty, by an exhaustive search method. They have studied how their capital and operating costs varied. The study reveals several interesting aspects of the dependence of capital and total costs on various design parameters. The authors considered a typical shell and tube heat exchanger used in an oil refinery. Its heat duty, inlet temperature and other details are given.
Resumo:
Multiband Hubbard and Pariser-Parr-Pople calculations have been carried out on mixed donor-acceptor (DA) stacks with doubly degenerate acceptor orbitals and nondegenerate donor orbitals at two-thirds filling. Model exact results for 2, 3, and 4 DA units show that McConnell's prediction of high-spin ground states in these systems is, in general, incorrect. The larger phase space available for the low-spin states leads to their kinetic stabilization in preference to high-spin states. However, for large electron-correlation strengths, the direct exchange dominates over the kinetic exchange resulting in a high-spin ground state
Resumo:
This work is a survey of the average cost control problem for discrete-time Markov processes. The authors have attempted to put together a comprehensive account of the considerable research on this problem over the past three decades. The exposition ranges from finite to Borel state and action spaces and includes a variety of methodologies to find and characterize optimal policies. The authors have included a brief historical perspective of the research efforts in this area and have compiled a substantial yet not exhaustive bibliography. The authors have also identified several important questions that are still open to investigation.
Resumo:
Genetic transformation systems have been established for Brassica nigra (cv. IC 257) by using an Agrobacterium binary vector as well as by direct DNA uptake of a plasmid vector. Both the type of vectors carried nptII gene and gus gene. For Agrobacterium mediated transformation, hypocotyl tissue explants were used, and up to 33% of the explants produced calli on selection medium. All of these expressed B-glucuronidase gene on histochemical staining. Protoplasts isolated from hypocotyl tissues of seedlings could be transformed with a plasmid vector by FEG mediated uptake of vector DNA. A number of fertile kanamycin resistant plants were obtained using both the methods, and their transformed nature was confirmed by Southern blot analysis and histochemical staining for GUS. Backcrossed and selfed progenies of these transformed plants showed the presence of npt and gus genes.
Resumo:
We carry out a direct numerical simulation (DNS) study that reveals the effects of polymers on statistically steady, forced, homogeneous, and isotropic fluid turbulence. We find clear manifestations of dissipation-reduction phenomena: on the addition of polymers to the turbulent fluid, we obtain a reduction in the energy dissipation rate; a significant modification of the fluid-energy spectrum, especially in the deep-dissipation range; and signatures of the suppression of small-scale structures, including a decrease in small-scale vorticity filaments. We also compare our results with recent experiments and earlier DNS studies of decaying fluid turbulence with polymer additives.
Resumo:
The polyvinylidene fluoride (PVDF) membrane is modified by the chemical etchant-route employing a sodium naphthalene charge-transfer complex followed by impregnation with Nafion ionomer or polyvinyl alcohol (PVA)-polystyrene sulfonic acid (PSSA) polymeric blend solutions by a dip-coating technique to form pore-filled-membrane electrolytes for application in direct methanol fuel cells (DMFCs). The number of coatings on the surface-modified PVDF membrane is varied between 5 and 15 and is found to be optimum at 10 layers both for Nafion and PVA-PSSA impregnations for effective DMFC performance. Hydrophilicity of the modified-membrane electrolytes is studied by determining average contact angle and surface-wetting energy. Morphology of the membranes is analyzed by a cross-sectional scanning electron microscope. The modified PVDF membrane electrolytes are characterized for their water-methanol sorption in conjunction with their mechanical properties, proton conductivity, and DMFC performance. Air permeability for the modified membranes is studied by a capillary-flow porometer. Methanol crossover flux across modified-PVDF-membrane electrolytes is studied by measuring the mass balance of methanol using a density meter. DMFCs employing membrane electrode assemblies with the modified PVDF membranes exhibit a peak power-density of 83 mW/cm(2) with Nafion impregnation and 59 mW/cm(2) for PVA-PSSA impregnation, respectively. Among the membranes studied here, stabilities of modified-pore-filled PVDF-Nafion and PVDF-PVA-PSSA membranes with 10-layers coat are promising for application in DMFCs. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3518774] All rights reserved.
Resumo:
In order to answer the practically important question of whether the down conductors of lightning protection systems to tall towers and buildings can be electrically isolated from the structure itself, this work is conducted. As a first step in this regard, it is presumed that the down conductor placed on metallic tower will be a pessimistic representation of the actual problem. This opinion was based on the fact that the proximity of heavy metallic structure will have a large damping effect. The post-stroke current distributions along the down conductors and towers, which can be quite different from that in the lightning channel, govern the post-stroke near field and the resulting gradient in the soil. Also, for a reliable estimation of the actual stroke current from the measured down conductor currents, it is essential to know the current distribution characteristics along the down conductors. In view of these, the present work attempts to deduce the post-stroke current and voltage distribution along typical down conductors and towers. A solution of the governing field equations on an electromagnetic model of the system is sought for the investigation. Simulation results providing the spatio-temporal distribution of the post-stroke current and voltage has provided very interesting results. It is concluded that it is almost impossible to achieve electrical isolation between the structure and the down conductor. Furthermore, there will be significant induction into the steel matrix of the supporting structure.
Resumo:
Amorphous SiO2 thin films were prepared on glass and silicon substrates by cost effective sol-gel method. Tetra ethyl ortho silicate (TEOS) was used as the precursor material, ethanol as solvent and concentrated HCl as a catalyst. The films were characterized at different annealing temperatures. The optical transmittance was slightly increased with increase of annealing temperature. The refractive index was found to be 1.484 at 550 nm. The formation of SiO2 film was analyzed from FT-IR spectra. The MOS capacitors were designed using silicon (1 0 0) substrates. The current-voltage (I-V), capacitance-voltage (C-V) and dissipation-voltage (D-V) measurements were taken for all the annealed films deposited on Si (1 0 0). The variation of current density, resistivity and dielectric constant of SiO2 films with different annealing temperatures was investigated and discussed for its usage in applications like MOS capacitor. The results revealed the decrease of dielectric constant and increase of resistivity of SiO2 films with increasing annealing temperature. (C) 2010 Elsevier B.V. All rights reserved.
A canonical formulation of the direct position kinematics problem for a general 6-6 stewart platform
Resumo:
This paper deals with the direct position kinematics problem of a general 6-6 Stewart platform, the complete solution of which is not reported in the literature until now and even establishing the number of possible solutions for the general case has remained an unsolved problem for a long period. Here a canonical formulation of the direct position kinematics problem for a general 6-6 Stewart platform is presented. The kinematic equations are expressed as a system of six quadratic and three linear equations in nine unknowns, which has a maximum of 64 solutions. Thus, it is established that the mechanism, in general, can have up to 64 closures. Further reduction of the system is shown arriving at a set of three quartic equations in three unknowns, the solution of which will yield the assembly configurations of the general Stewart platform with far less computational effort compared to earlier models.
Resumo:
A hybrid technique to model two dimensional fracture problems which makes use of displacement discontinuity and direct boundary element method is presented. Direct boundary element method is used to model the finite domain of the body, while displacement discontinuity elements are utilized to represent the cracks. Thus the advantages of the component methods are effectively combined. This method has been implemented in a computer program and numerical results which show the accuracy of the present method are presented. The cases of bodies containing edge cracks as well as multiple cracks are considered. A direct method and an iterative technique are described. The present hybrid method is most suitable for modeling problems invoking crack propagation.
Resumo:
In this paper we present a novel macroblock mode decision algorithm to speedup H.264/SVC Intra frame encoding. We replace the complex mode-decision calculations by a classifier which has been trained specifically to minimize the reduction in RD performance. This results in a significant speedup in encoding. The results show that machine learning has a great potential and can reduce the complexity substantially with negligible impact on quality. The results show that the proposed method reduces encoding time to about 70% in base layer and up to 50% in enhancement layer of the reference implementation with a negligible loss in quality.
Resumo:
We develop in this article the first actor-critic reinforcement learning algorithm with function approximation for a problem of control under multiple inequality constraints. We consider the infinite horizon discounted cost framework in which both the objective and the constraint functions are suitable expected policy-dependent discounted sums of certain sample path functions. We apply the Lagrange multiplier method to handle the inequality constraints. Our algorithm makes use of multi-timescale stochastic approximation and incorporates a temporal difference (TD) critic and an actor that makes a gradient search in the space of policy parameters using efficient simultaneous perturbation stochastic approximation (SPSA) gradient estimates. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal policy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Tin sulfide (SnS) is a material of interest for use as an absorber in low cost solar cells. Single crystals of SnS were grown by the physical vapor deposition technique. The grown crystals were characterized to evaluate the composition, structure, morphology, electrical and optical properties using appropriate techniques. The composition analysis indicated that the crystals were nearly stoichiometric with Sn-to-S atomic percent ratio of 1.02. Study of their morphology revealed the layered type growth mechanism with low surface roughness. The grown crystals had orthorhombic structure with (0 4 0) orientation. They exhibited an indirect optical band gap of 1.06 eV and direct band gap of 1.21 eV with high absorption coefficient (up to 10(3) cm(-1)) above the fundamental absorption edge. The grown crystals were of p-type with an electrical resistivity of 120 Omega cm and carrier concentration 1.52 x 10(15) cm(-3). Analysis of optical absorption and diffuse reflectance spectra showed the presence of a wide absorption band in the wavelength range 300-1200 nm, which closely matches with a significant part of solar radiation spectrum. The obtained results were discussed to assess the suitability of the SnS crystal for the fabrication of optoelectronic devices. (C) 2011 Elsevier B.V. All rights reserved.