132 resultados para dipole
Resumo:
Heteronuclear multiple-quantum coherence relaxation rate are calculated for the individual transitions of the S spin in an AIS nuclear spin system assuming that the heteronucleus (S spin) has relaxation contributions from both intramolecular dipole-dipole and chemical shift anisotropy relaxation. The individual multiplet components of the heteronuclear zero- and double-quantum coherences are shown to have different transverse relaxation rates. The cross-correlation between the two relaxation mechanisms is shown to be the dominant cause of the calculated differential line broadening. Experimental data are presented using as an example a uniformly 15N labelled sample of human epidermal growth factor.
Resumo:
The low-lying singlets and triplets of biphenyl are obtained exactly within the PPP model using the diagrammatic valence bond method. The energy gaps within the singlet manifold as well as the lowest singlet-triplet gap are found to be in good agreement with experimental results. The two weak absorptions between 4·1 and 4·2 eV reported experimentally are attributed to the two states lying below the optical gap that become weakly allowed on breaking electron-hole and inversion symmetries. The observed blue shift of the spectral lines, attributed to a change in dihedral angle, on going from crystalline to solution to vapour phase is also well reproduced within the PPP model. The bond orders show that the ground singlet state is benzenoidal while the dipole excited state as well as the lowest triplet state are quinonoidal and planar. Comparison with the experimental spin densities and the fine structure constants D and E in the triplet state point to slightly weaker correlations than assumed by the PPP model. The introduction of a 1-8 bond to mimic poly(paraphenylene)s gives an optical gap that is in good agreement with experiment.
Resumo:
We compute the entropy and transport properties of water in the hydration layer of dipalmitoylphosphatidylcholine bilayer by using a recently developed theoretical scheme two-phase thermodynamic model, termed as 2PT method; S.-T. Lin et al., J. Chem. Phys. 119, 11792 (2003)] based on the translational and rotational velocity autocorrelation functions and their power spectra. The weights of translational and rotational power spectra shift from higher to lower frequency as one goes from the bilayer interface to the bulk. Water molecules near the bilayer head groups have substantially lower entropy (48.36 J/mol/K) than water molecules in the intermediate region (51.36 J/mol/K), which have again lower entropy than the molecules (60.52 J/mol/K) in bulk. Thus, the entropic contribution to the free energy change (T Delta S) of transferring an interface water molecule to the bulk is 3.65 kJ/mol and of transferring intermediate water to the bulk is 2.75 kJ/mol at 300 K, which is to be compared with 6.03 kJ/mol for melting of ice at 273 K. The translational diffusion of water in the vicinity of the head groups is found to be in a subdiffusive regime and the rotational diffusion constant increases going away from the interface. This behavior is supported by the slower reorientational relaxation of the dipole vector and OH bond vector of interfacial water. The ratio of reorientational relaxation time for Legendre polynomials of order 1 and 2 is approximately 2 for interface, intermediate, and bulk water, indicating the presence of jump dynamics in these water molecules. (C) 2010 American Institute of Physics. doi:10.1063/1.3494115]
Resumo:
The low frequency dielectric behavior of castor oil (a vegetable oil) has been analyzed quite exhaustively in the context of its application as impregnant in capacitors. For the sake of completeness and in order to understand the relaxation phenomena in this liquid dielectric, this high frequency dielectric study was undertaken. In order to compare its properties with a liquid dielectric used in similar application and whose high frequency behavior has been quite well analyzed, Arochlor 1476 was studied. It is observed that both liquids have distributed relaxation times. The distribution parameters together with the two distinct relaxation times have been calculated by measuring the average relaxation time. It has been found that the distinct relaxation times thus calculated represent the dielectric behavior quite satisfactorily. The average dipole moments, dipole radii and thermal activation energies for dipole relaxation have also been evaluated.
Resumo:
We report the absorption spectra, oscillator strengths, ground state and excited state dipole moments, and molecular second order polarizability coefficients (βCT) due to donor—acceptor charge transfer in four trisubstituted ethylenes, namely 1,1-bisdimethylamino-2-nitroethylene, 1,1-bispyrolidino-2-nitroethylene, 1,1-bispiperidino-2-nitroethylene and 1,1-bismorpholino-2-nitroethylene. The results are compared with that of trans-N,N-dimethylamino-nitroethylene, which has a large βCT. The powder second harmonic generation (SHG) intensity of all these molecules is also measured and only 1,1-bispiperidino-2-nitroethylene is found to possess an efficiency of 20% of that of urea under the same conditions. The SHG efficiency of this compound and deficiency in the other molecules in the powdered state is discussed in terms of their arrangements in the unit cell. The crystal structure of the active molecule is also presented and the structure—property relationship is critically examined in all these molecules.
Resumo:
The evolution with increasing Coulomb correlations of a semiconductor to a magnetic insulator is related to an excited-state crossover in pi-electron models for conjugated polymers. We associate strong fluorescence with a lowest singlet excitation S1 that is dipole allowed, on the band side, while S1 becomes two-photon allowed on the correlated side. S1/S2 crossovers in Hubbard, Pariser-Parr-Pople, or other chains with electron-hole symmetry and alternating transfer integral t(1 +/- delta) are based on exact results at delta=0 and 1, on molecular exciton theory at large delta, and on oligomer calculations up to twelve sites.
Resumo:
Poly(ethylene-co-vinyl acetate) (EVA) films were irradiated with a 1.2MeV electron beam at varied doses over the range 0-270kGy in order to investigate the modifications induced in its optical, electrical and thermal properties. It was observed that optical band gap and activation energy of EVA films decreased upon electron irradiation, whereas the transition dipole moment, oscillator strength and number of carbon atoms per cluster were found to increase upon irradiation. Further, the dielectric constant, the dielectric loss, and the ac conductivity of EVA films were found to increase with an increase in the dose of electron radiation. The result further showed that the thermal stability of EVA film samples increased upon electron irradiation.
Resumo:
CaSiO3:Eu3+ (1-5 mol%) red emitting phosphors have been synthesized by a low-temperature solution combustion method. The phosphors have been well characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and optical spectroscopy. PXRD patterns reveal monoclinic CaSiO3 phase can be obtained at 900 degrees C. The SEM micrographs show the crystallites with irregular shape, mostly angular. Upon 254 nm excitation, the phosphor show characteristic fluorescence D-5(0) -> F-7(J) (J = 0, 1, 2, 3, 4) of the Eu3+ ions. The electronic transition located at 614 nm corresponding to D-5(0) -> F-7(2) of Eu3+ ions, which is stronger than the magnetic dipole transition located at 593 nm corresponding to D-5(0) -> F-7(1) of Eu3+ ions. Different pathways involved in emission process have been studied. Concentration quenching has been observed for Eu3+ concentration >4 mol%. UV-visible absorption shows an intense band at 240 nm in undoped and 270 nm in Eu3+ doped CaSiO3 which is attributed to oxygen to silicon (O-Si) ligand-to-metal charge-transfer (LMCT) band in the SiO32- group. The optical energy band gap is widened with increase of Eu3+ ion dopant. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The absorption and emission spectra of two dyes namely 6MAMC and 7MAMC have been recorded at room temperature in solvents of different polarities. The ground-state dipole moments (mu(g)) of these two were determined experimentally by Guggenheim method and were compared with theoretical values obtained using quantum chemical method. The exited state (mu(e))dipole moments were estimated from Lippert's, Bakhshiev's and Chamma-Viallet's equations by using the variation of the Stokes shift with the solvent dielectric constant and refractive index. The ground and excited-state dipole moments were calculated by means of the solvatochromic shift method and also the excited-state dipole moments are determined in combination with ground-state dipole moments. It was observed that dipole moments of excited state were higher than those of the ground state, indicating a substantial redistribution of the pi-electron densities in a more polar excited state for these two dyes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A state-of-the-art model of the coupled ocean-atmosphere system, the climate forecast system (CFS), from the National Centres for Environmental Prediction (NCEP), USA, has been ported onto the PARAM Padma parallel computing system at the Centre for Development of Advanced Computing (CDAC), Bangalore and retrospective predictions for the summer monsoon (June-September) season of 2009 have been generated, using five initial conditions for the atmosphere and one initial condition for the ocean for May 2009. Whereas a large deficit in the Indian summer monsoon rainfall (ISMR; June-September) was experienced over the Indian region (with the all-India rainfall deficit by 22% of the average), the ensemble average prediction was for above-average rainfall during the summer monsoon. The retrospective predictions of ISMR with CFS from NCEP for 1981-2008 have been analysed. The retrospective predictions from NCEP for the summer monsoon of 1994 and that from CDAC for 2009 have been compared with the simulations for each of the seasons with the stand-alone atmospheric component of the model, the global forecast system (GFS), and observations. It has been shown that the simulation with GFS for 2009 showed deficit rainfall as observed. The large error in the prediction for the monsoon of 2009 can be attributed to a positive Indian Ocean Dipole event seen in the prediction from July onwards, which was not present in the observations. This suggests that the error could be reduced with improvement of the ocean model over the equatorial Indian Ocean.
Resumo:
We propose that strong fluorescence in conjugated polymers requires a dipole-allowed state to be the lowest singlet. Hückel theory for para-conjugated phenyl rings yields an extended, topologically one-dimensional ?-system with increased alternation, states localized on each ring, and charge-transfer excitations between them. Exact Pariser�Parr�Pople results and molecular spectra for oligomers support a topological contribution and a lowest dipole-allowed singlet in phenylene polymers.
Resumo:
Experiments have repeatedly observed both thermodynamic and dynamic anomalies in aqueous binary mixtures, surprisingly at low solute concentration. Examples of such binary mixtures include water-DMSO, water-ethanol, water-tertiary butyl alcohol (TBA), and water-dioxane, to name a few. The anomalies have often been attributed to the onset of a structural transition, whose nature, however, has been left rather unclear. Here we study the origin of such anomalies using large scale computer simulations and theoretical analysis in water-DMSO binary mixture. At very low DMSO concentration (below 10%), small aggregates of DMSO are solvated by water through the formation of DMSO-(H2O)(2) moieties. As the concentration is increased beyond 10-12% of DMSO, spanning clusters comprising the same moieties appear in the system. Those clusters are formed and stabilized not only through H-bonding but also through the association of CH3 groups of DMSO. We attribute the experimentally observed anomalies to a continuum percolation-like transition at DMSO concentration X-DMSO approximate to 12-15%. The largest cluster size of CH3-CH3 aggregation clearly indicates the formation of such percolating clusters. As a result, a significant slowing down is observed in the decay of associated rotational auto time correlation functions (of the S = O bond vector of DMSO and O-H bond vector of water). Markedly unusual behavior in the mean square fluctuation of total dipole moment again suggests a structural transition around the same concentration range. Furthermore, we map our findings to an interacting lattice model which substantiates the continuum percolation model as the reason for low concentration anomalies in binary mixtures where the solutes involved have both hydrophilic and hydrophobic moieties.
Resumo:
Gd2O3:Eu3+ (4 mol%) nanophosphor co-doped with Li+ ions have been synthesized by low-temperature solution combustion technique in a short time. Powder X-ray diffractometer (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), UV-VIS and photoluminescence (PL) techniques have been employed to characterize the synthesized nanoparticles. It is found that the lattice of Gd2O3:Eu3+ phosphor transforms from monoclinic to cubic as the Li+-ions are doped. Upon 254 nm excitation, the phosphor showed characteristic luminescence D-5(0) -> F-7(J) (J= 0-4) of the Eu3+ ions. The electronic transition located at 626 nm (D-5(0) -> F-7(2)) of Eu3+ ions was stronger than the magnetic dipole transition located at 595 nm (D-5(0) -> F-7(1)). Furthermore, the effects of the Li+ co-doping as well as calcinations temperature on the PL properties have been studied. The results show that incorporation of Li+ ions in Gd2O3:Eu3+ lattice could induce a remarkable improvement of their PL intensity. The emission intensity was observed to be enhanced four times than that of with out Li+-doped Gd2O3:Eu3+. (C) 2010 Elsevier B.V. All rights reserved,
Resumo:
The SCF/DZP and MP2/DZP methods of ab initio quantum chemistry have been utilized to study the structure, vibrational spectra, binding energy, and barrier to internal rotation of methyl isocyanide-borane and acetonitrile-borane adducts. The eclipsed conformation of the complexes was predicted to be a minimum, and the staggered form is a transition state with a barrier height of about 10 cal/mol. The vibrational analyses of CH3NC-BH3 and CH3CN-BH3 and several of their isotopomers have been carried out by the GF matrix method. Computations have also been carried out for free CH3NC and CH3CN in order to investigate the changes in CH3NC and CH3CN as a result of their complex formation with BH3. To obtain an acceptable set of force constants, a recently proposed procedure ''RECOVES'' has been utilized. The increase in the N=C/C=N stretching force constant of CH3NC/CH3CN on adduct formation is interpreted with the help of Parr and Borkman's model. The binding energies for the two adducts have been determined taking basis set superposition error (BSSE) into consideration. The effect of the BSSE on structure, dipole moment, and vibrational frequencies of CH3CN and CH3NC is also evaluated. The predicted infrared band intensities for the two complexes are in good agreement with the experimentally observed features, and they have been utilized in the assignment of vibrational frequencies.
Resumo:
The ac conductivity and dielectric behaviors of sodium borovanadate glasses have been studied over wide ranges of composition and frequency. The de activation energies calculated from the complex impedance plots decrease linearly with the Na2O concentration, indicating that ionic conductivity dominates in these glasses. The possible origin of low-temperature departures of conductivity curves (from linearity) of vanadium-rich glasses in log sigma versus 1/T plots is discussed. The ac conductivities have been fitted to the Almond-West type power law expression with use of a single value of s. It is found that in most of the glasses s exhibits a temperature-dependent minimum. The dielectric data are converted into moduli (M*) and are analyzed using the Kohlrausch-William-Watts stretched exponential function, The activation barriers, W, calculated from the temperature-dependent dielectric loss peaks compare well with the activation barriers calculated from the de conductivity plots. The stretching exponent beta is found to be temperature independent and is not likely to be related as in the equation beta = 1 - s, An attempt is made to elucidate the origin of the stretching phenomena. It appears that either a model of the increased contribution of polarization energy (caused by the increased modifier concentration) and hence the increased monopole-induced dipole interactions or a model based on increased intercationic interactions can explain the slowing down of the primitive relaxation in ionically conducting glasses.