69 resultados para dS vacua in string theory
Resumo:
Consider a J-component series system which is put on Accelerated Life Test (ALT) involving K stress variables. First, a general formulation of ALT is provided for log-location-scale family of distributions. A general stress translation function of location parameter of the component log-lifetime distribution is proposed which can accommodate standard ones like Arrhenius, power-rule, log-linear model, etc., as special cases. Later, the component lives are assumed to be independent Weibull random variables with a common shape parameter. A full Bayesian methodology is then developed by letting only the scale parameters of the Weibull component lives depend on the stress variables through the general stress translation function. Priors on all the parameters, namely the stress coefficients and the Weibull shape parameter, are assumed to be log-concave and independent of each other. This assumption is to facilitate Gibbs sampling from the joint posterior. The samples thus generated from the joint posterior is then used to obtain the Bayesian point and interval estimates of the system reliability at usage condition.
Resumo:
Consider a J-component series system which is put on Accelerated Life Test (ALT) involving K stress variables. First, a general formulation of ALT is provided for log-location-scale family of distributions. A general stress translation function of location parameter of the component log-lifetime distribution is proposed which can accommodate standard ones like Arrhenius, power-rule, log-linear model, etc., as special cases. Later, the component lives are assumed to be independent Weibull random variables with a common shape parameter. A full Bayesian methodology is then developed by letting only the scale parameters of the Weibull component lives depend on the stress variables through the general stress translation function. Priors on all the parameters, namely the stress coefficients and the Weibull shape parameter, are assumed to be log-concave and independent of each other. This assumption is to facilitate Gibbs sampling from the joint posterior. The samples thus generated from the joint posterior is then used to obtain the Bayesian point and interval estimates of the system reliability at usage condition.
Resumo:
The correlation clustering problem is a fundamental problem in both theory and practice, and it involves identifying clusters of objects in a data set based on their similarity. A traditional modeling of this question as a graph theoretic problem involves associating vertices with data points and indicating similarity by adjacency. Clusters then correspond to cliques in the graph. The resulting optimization problem, Cluster Editing (and several variants) are very well-studied algorithmically. In many situations, however, translating clusters to cliques can be somewhat restrictive. A more flexible notion would be that of a structure where the vertices are mutually ``not too far apart'', without necessarily being adjacent. One such generalization is realized by structures called s-clubs, which are graphs of diameter at most s. In this work, we study the question of finding a set of at most k edges whose removal leaves us with a graph whose components are s-clubs. Recently, it has been shown that unless Exponential Time Hypothesis fail (ETH) fails Cluster Editing (whose components are 1-clubs) does not admit sub-exponential time algorithm STACS, 2013]. That is, there is no algorithm solving the problem in time 2 degrees((k))n(O(1)). However, surprisingly they show that when the number of cliques in the output graph is restricted to d, then the problem can be solved in time O(2(O(root dk)) + m + n). We show that this sub-exponential time algorithm for the fixed number of cliques is rather an exception than a rule. Our first result shows that assuming the ETH, there is no algorithm solving the s-Club Cluster Edge Deletion problem in time 2 degrees((k))n(O(1)). We show, further, that even the problem of deleting edges to obtain a graph with d s-clubs cannot be solved in time 2 degrees((k))n(O)(1) for any fixed s, d >= 2. This is a radical contrast from the situation established for cliques, where sub-exponential algorithms are known.
Resumo:
High-level ab initio calculations have been used to study the interactions between the CH3 group of CH3X (X = F, Cl, Br, CN) molecules and pi-electrons. These interactions are important because of the abundance of both the CH3 groups and pi-electrons in biological systems. Complexes between C2H4/C2H2 and CH3X molecules have been used as model systems. Various theoretical methods such as atoms in molecules theory, reduced density gradient analysis, and natural bond orbital analysis have been used to discern these interactions. These analyses show that the interaction of the p-electrons with the CH3X molecules leads to the formation of X-C...p carbon bonds. Similar complexes with other tetrel molecules, SiH3X and GeH3X, have also been considered.
Resumo:
Let C be a smooth irreducible projective curve of genus g and L a line bundle of degree d generated by a linear subspace V of H-0 (L) of dimension n+1. We prove a conjecture of D. C. Butler on the semistability of the kernel of the evaluation map V circle times O-C -> L and obtain new results on the stability of this kernel. The natural context for this problem is the theory of coherent systems on curves and our techniques involve wall crossing formulae in this theory.
Resumo:
Spatial modulation (SM) is attractive for multiantenna wireless communications. SM uses multiple transmit antenna elements but only one transmit radio frequency (RF) chain. In SM, in addition to the information bits conveyed through conventional modulation symbols (e.g., QAM), the index of the active transmit antenna also conveys information bits. In this paper, we establish that SM has significant signal-to-noise (SNR) advantage over conventional modulation in large-scale multiuser (multiple-input multiple-output) MIMO systems. Our new contribution in this paper addresses the key issue of large-dimension signal processing at the base station (BS) receiver (e.g., signal detection) in large-scale multiuser SM-MIMO systems, where each user is equipped with multiple transmit antennas (e.g., 2 or 4 antennas) but only one transmit RF chain, and the BS is equipped with tens to hundreds of (e.g., 128) receive antennas. Specifically, we propose two novel algorithms for detection of large-scale SM-MIMO signals at the BS; one is based on message passing and the other is based on local search. The proposed algorithms achieve very good performance and scale well. For the same spectral efficiency, multiuser SM-MIMO outperforms conventional multiuser MIMO (recently being referred to as massive MIMO) by several dBs. The SNR advantage of SM-MIMO over massive MIMO can be attributed to: (i) because of the spatial index bits, SM-MIMO can use a lower-order QAM alphabet compared to that in massive MIMO to achieve the same spectral efficiency, and (ii) for the same spectral efficiency and QAM size, massive MIMO will need more spatial streams per user which leads to increased spatial interference.
Resumo:
LDPC codes can be constructed by tiling permutation matrices that belong to the square root of identity type and similar algebraic structures. We investigate into the properties of such codes. We also present code structures that are amenable for efficient encoding.
Resumo:
We consider optimal power allocation policies for a single server, multiuser system. The power is consumed in transmission of data only. The transmission channel may experience multipath fading. We obtain very efficient, low computational complexity algorithms which minimize power and ensure stability of the data queues. We also obtain policies when the users may have mean delay constraints. If the power required is a linear function of rate then we exploit linearity and obtain linear programs with low complexity.
Resumo:
Motivated by multi-distribution divergences, which originate in information theory, we propose a notion of `multipoint' kernels, and study their applications. We study a class of kernels based on Jensen type divergences and show that these can be extended to measure similarity among multiple points. We study tensor flattening methods and develop a multi-point (kernel) spectral clustering (MSC) method. We further emphasize on a special case of the proposed kernels, which is a multi-point extension of the linear (dot-product) kernel and show the existence of cubic time tensor flattening algorithm in this case. Finally, we illustrate the usefulness of our contributions using standard data sets and image segmentation tasks.