93 resultados para conditional least squares
Resumo:
The linear quadridentate ligand N,N'-bis(benzimidazoI-2-ylethyl)ethane-l,2-diamine (L') and its 1 - methylbenzimidazole analogue (L2) and homologues form 1 : 1 complexes with Cu(CIO,),; L' also forms complexes of the types CuL'X, where X = NO,, PF,, Br or CI and CuL'(X)Y where X = CI or Br and Y = CIO, or Br. Deep blue CuL1Br,*2H20 crystallizes in the monoclinic space group C2/c with Z = 4, a = 9.91 9(2), b = 16.626(3), c = 14.1 02(3) le\ and p = 94.39(2)". The structure was solved by Patterson and Fourier difference methods and refined by the least-squares technique to R = 0.064 for 2195 independent reflections with / > 1.50(/). The molecule lies on a two-fold axis symmetrically around Cu". The co-ordination around Cu" is found to be square planar with two amino nitrogens and two benzimidazole nitrogens forming the equatorial plane [CU-N 1.983(3) and 2.037(4) A]. The bromides are at longer distances [3.349(1) A] in axial sites. Ligand field and EPR spectra indicate that one bromide or chloride ion is axially co-ordinated to Cu" in [CuL1l2+. This ion exhibits quasi-reversible redox behaviour. Electrochemical studies of the dihalides in methanol have established the presence of [CuL'X,], [CuL'(X)]+ and [CuL'I2+ in equilibrium. In complexes with 565 [CuL4I2+ [L4 = N,Nbis( benzimidazol-2-ylmethyl)ethane-l,2-diamine] and 555 [CuL3] [L3 = N,N'-bis(1 -methylbenzimidazol- 2-ylmethyl)propane-l,3-diamine] chelate rings, Cull does not seem to lie in the N, square plane, as revealed by their low A values and irreversible electrochemical behaviour. The Cu"-Cu' redox potentials in methanol are in the order [CuL1I2+ < [CuL3I2+ < [CuL4I2+; this illustrates that sixmembered chelate rings are suitable to stabilize Cu", when CU-N 0 interactions are favourable.
Resumo:
The ternary metal deoxyribonucleotide complex [Cu(bzim)(5?-dGMP)(H2O)3](bzim = benzimidazole, 5?-dGMP = 2?-deoxyguanosine 5?-monophosphate) has been prepared and the structure analysed by X-ray diffraction. The compound crystallizes in the space group P1 with a= 7.069(6), b= 13.959(10), c= 14.204(12)Å, ?= 75.12(6), ?= 94.15(6), ?= 97.98(6)° and Z= 2. The structure was solved by the heavy-atom method and refined by full-matrix least-squares procedures on the basis of 2813 observed [I[gt-or-equal] 3?(I)] reflections to final R and R? values of 0.050 and 0.052 respectively. There are two independent molecules in the asymmetric unit and both copper(II) centres have square-pyramidal co-ordination geometry. An unusual feature of the structure is the co-ordination of the metal by N(7) of the base, in the presence of a ?-aromatic amine, bzim. The structure is stabilized by intermolecular base�bzim stacking. The nucleotides of both the molecules have an anti conformation about the glycosyl bond, and a gauche-gauche conformation about the C(4?)�C(5?) bond. A feature of particular interest is the unusual sugar conformation. The base furanose rings of the two nucleotide molecules adopt C(3?)-exo/C(2?)-endo pucker and C(3?)-exo pucker respectively.
Resumo:
alpha,beta-Dehydrophenylalanine residues constrain the peptide backbone to beta-bend conformation. A pentapeptide containing four consecutive (Delta Phe) residues has been synthesised and crystallised. The peptide Boc-LAla-Delta Phe-Delta Phe-Delta Phe-Delta Phe-NHMe (C45H46N6O7, MW = 782.86) was crystallised from an acetonitrile/methanol mixture. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1) With a = 19.455(6), b = 20.912(9), c = 11.455(4) Angstrom and Z = 4. The X-ray (MoKalpha, lambda = 0.7107 Angstrom) intensity data were collected using the Rigaku-AFC7 diffractrometer. The crystal structure was determined by direct methods and refined using the least-squares technique, R = 8.41% for 1827 reflections with \F-o\ > 4 sigma\F-o\. The molecule contains the largest stretch of consecutive dehydrophenylalanine residues whose crystal structure has been determined so far. The peptide adopts left-handed 3(10)-helical conformation despite the presence of LAla at the N-terminus. The mean phi, psi values, averaged across the last four residues are 56.8 degrees and 17.5 degrees, respectively. There are four 4-->1 intramolecular hydrogen bonds, characteristic of the 3(10)-helix. In the crystal each molecule interacts with four crystallographically symmetric molecules with one hydrogen bond each.
Resumo:
An N-alpha-protected model pentapeptide containing two consecutive Delta Phe residues, Boc-Leu-Delta Phe-Delta Phe-Ala-Phe-NHMe, has been synthesized by solution methods and fully characterized. H-1-nmr studies provided evidence for the occurrence of a significant population of a conformer having three consecutive, intramolecularly II-bonded beta-bends in solution. The solid state structure has been determined by x-ray diffraction methods. The crystals grown from aqueous methanol are orthorhombic, space group P2(1)2(1)2(1),, a = 11.503(2), b = 16.554(2), c = 22.107(3) Angstrom, V = 4209(1) Angstrom,(3) and Z = 4. The x-ray data were collected on a CAD4 diffractometer using CuKalpha radiation (lambda = 1.5418 Angstrom). The structure was determined using direct methods and refined by full-matrix least-squares procedure. The R factor is 5.3%. The molecule is characterized by a right handed 3(10)-helical conformation ((phi) = -68.2 degrees (psi) = -26.3 degrees), which is made up of two consecutive type III beta-bends and one type I beta-bend. In the solid state the helical molecules are aligned head-to-tail, thus forming long rod like structures. A comparison with other peptide structures containing consecutive Delta Phe residues is also provided. The present study confirms that the -Delta Phe-Delta Phe-sequence can be accommodated in helical structures. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The anomalous X-ray scattering (AXS) method using Mo K absorption edges has been employed for obtaining the local structural information of superionic conducting glass having the composition (AgI)(0.6)(Ag2MoO4)(0.4). The possible atomic arrangements in the near-neighbor region of this glass were estimated by coupling the results with the least-squares variational analysis so as to reproduce the differential intensity profile for Mo as well as the ordinary scattering profile. The coordination number of oxygen around Mo is found to be about 4 at the distance of 0.180 mn. This implies that the most probable structural entity in the glass is the MoO4 tetrahedral unit which has been proposed based on infrared spectroscopy. The value of the coordination number of I- around Ag+ is estimated as 4.4 at 0.287 nm, suggesting an arrangement similar to that of crystalline or molten AgI.
Resumo:
The problem of estimating multiple Carrier Frequency Offsets (CFOs) in the uplink of MIMO-OFDM systems with Co-Channel (CC) and OFDMA based carrier allocation is considered. The tri-linear data model for generalized, multiuser OFDM system is formulated. Novel blind subspace based estimation of multiple CFOs in the case of arbitrary carrier allocation scheme in OFDMA systems and CC users in OFDM systems based on the Khatri-Rao product is proposed. The method works where the conventional subspace method fails. The performance of the proposed methods is compared with pilot based Least-Squares method.
Resumo:
Electron Diffraction Structure Analysis (EDSA) with data from standard selected-area electron diffraction (SAED) is still the method of choice for structure determination of nano-sized single crystals. The recently determined heavy atom structure α-Ti2Se (Albe & Weirich, 2003) is used as an example to illustrate the developed procedure for structure determination from two-dimensionally SAED data via direct methods and kinematical least-squares refinement. Despite the investigated crystallite had a relatively large effective thickness of about 230 Å as determined from dynamical calculations, the obtained structural model from SAED data was found in good agreement with the result from an earlier single crystal X-ray study (Weirich, Pöttgen & Simon, 1996). Arguments, which support the validity of the used quasi-kinematical approach, are given in the text. The influences of dynamical and secondary scattering on the quality of the data and the structure solution are discussed. Moreover, the usefulness of first-principles calculations for verifying the results from EDSA is demonstrated by two examples, whereas one of the structures was unattainable by conventional X-ray diffraction.
Resumo:
The enthalpy increments and the standard molar Gibbs energies of formation-of DyFeO3(s) and Dy3Fe5O12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A co-operative phase transition, related to anti-ferromagnetic to paramagnetic transformation, is apparent. from the heat capacity data for DyFeO3 at similar to 648 K. A similar type of phase transition has been observed for Dy3Fe5O12 at similar to 560 K which is related to ferrimagnetic to paramagnetic transformation. Enthalpy increment data for DyFeO3(s) and Dy3Fe5O12(s), except in the vicinity of the second-order transition, can be represented by the following polynomial expressions:{H(0)m(T) - H(0)m(298.15 K)) (Jmol(-1)) (+/-1.1%) = -52754 + 142.9 x (T (K)) + 2.48 x 10(-3) x (T (K))(2) + 2.951 x 10(6) x (T (K))(-1); (298.15 less than or equal to T (K) less than or equal to 1000) for DyFeO3(s), and {H(0)m(T) - H(0)m(298.15 K)} (Jmol(-1)) (+/-1.2%) = -191048 + 545.0 x (T - (K)) + 2.0 x 10(-5) x (T (K))(2) + 8.513 x 10(6) x (T (K))(-1); (208.15 less than or equal to T (K) less than or equal to 1000)for Dy3Fe5O12(s). The reversible emfs of the solid-state electrochemical cells: (-)Pt/{DyFeO3(s) + Dy2O3(s) + Fe(s)}/YDT/CSZ//{Fe(s) + Fe0.95O(s)}/Pt(+) and (-)Pt/{Fe(s) + Fe0.95O(s)}//CSZ//{DyFeO3(s) + Dy3Fe5O12(s) + Fe3O4(s)}/Pt(+), were measured in the temperature range from 1021 to 1250 K and 1035 to 1250 K, respectively. The standard Gibbs energies of formation of solid DyFeO3 and Dy3Fe5O12 calculated by the least squares regression analysis of the data obtained in the present study, and data for Fe0.95O and Dy2O3 from the literature, are given by Delta(f)G(0)m(DyFeO3,s)(kJmol(-1))(+/-3.2)= -1339.9 + 0.2473 x (T(K)); (1021 less than or equal to T (K) less than or equal to 1548)and D(f)G(0)m(Dy3Fe5O12,s) (kJmol(-1)) (+/-3.5) = -4850.4 + 0.9846 x (T (K)); (1035 less than or equal to T (K) less than or equal to 1250) The uncertainty estimates for Delta(f)G(0)m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagram and chemical potential diagrams for the system Dy-Fe-O were developed at 1250 K. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
The enthalpy increments and the standard molar Gibbs energy of formation of NdFeO3(s) have been measured using a hightemperature Calvet microcalorimeter and a solid oxide galvanic cell, respectively. A lambda-type transition, related to magnetic order-disorder transformation (antiferromagnetic to paramagnetic), is apparent from the heat capacity data at similar to 687 K. Enthalpy increments, except in the vicinity of transition, can be represented by a polynomial expression: {Hdegrees(m)(T)-Hdegrees(m) (298.15 K)} /J(.)mol(-1) (+/- 0.7%)=-53625.6+146.0(T/K) +1.150 X 10(-4)(T/K)(2) +3.007 x 10(6)(T/K)(-1); (298.15 less than or equal to T/K less than or equal to 1000). The heat capacity, the first differential of {Hdegrees(m)(T)-Hdegrees(m)(298.15 K)}with respect to temperature, is given by Cdegrees(pm)/J(.)K(-1.)mol(-1)=146.0+ 2.30x10(-4) (T/K) - 3.007 X 10(6)(T/K)(-2). The reversible emf's of the cell, (-) Pt/{NdFeO3(s) +Nd2O3(s)+Fe(s)}//YDT/CSZ// Fe(s)+'FeO'(s)}/Pt(+), were measured in the temperature range from 1004 to 1208 K. It can be represented within experimental error by a linear equation: E/V=(0.1418 +/- 0.0003)-(3.890 +/- 0.023) x 10(-5)(T/K). The Gibbs energy of formation of solid NdFeO, calculated by the least-squares regression analysis of the data obtained in the present study, and data for Fe0.95O and Nd2O3 from the literature, is given by Delta(f)Gdegrees(m)(NdFeO3 s)/kJ (.) mol(-1)( +/- 2.0)=1345.9+0.2542(T/K); (1000 less than or equal to T/K less than or equal to 1650). The error in Delta(f)Gdegrees(m)(NdFeO3, s, T) includes the standard deviation in emf and the uncertainty in the data taken from the literature. Values of Delta(f)Hdegrees(m)(NdFeO3, s, 298.15 K) and Sdegrees(m) (NdFeO3 s, 298.15 K) calculated by the second law method are - 1362.5 (+/-6) kJ (.) mol(-1) and 123.9 (+/-2.5) J (.) K-1 (.) mol(-1), respectively. Based on the thermodynamic information, an oxygen potential diagram for the system Nd-Fe-O was developed at 1350 K. (C) 2002 Elsevier Science (USA).
Resumo:
The enthalpy increments and the standard molar Gibbs energy (G) of formation of SmFeO3(S) and SM3Fe5O12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A X-type transition, related to magnetic order-disorder transformation (antiferromagnetic to paramagnetic), is apparent from the heat capacity data at similar to673 K for SmFeO3(s) and at similar to560 K for Sm3Fe5O12(S). Enthalpy increment data for SmFeO3(s) and SM3Fe5O12(s), except in the vicinity of X-transition, can be represented by the following polynomial expressions:
{H-m(0)(T) - H-m(0)(298.15 K){/J mol-(1)(+/-1.2%) = -54 532.8 + 147.4 . (T/K) + 1.2 . 10(-4) . (T/K)(2) +3.154 . 10(6) . (T/K)(-1); (298.15 less than or equal to T/K less than or equal to 1000)
for SmFeO3(s), and
{H-m(0)(T) - H-m(0)(298.15 K)}/J mol(-1) (+/-1.4%) = -192 763 + 554.7 . (T/K) + 2.0 . 10(-6) . (T/K)(2) + 8.161 . 10(6) - (T/K)(-1); (298.15 less than or equal to T/K less than or equal to 1000) for Sm3Fe5O12(s).
The reversible emf of the solid-state electrochemical cells, (-)Pt/{SmFeO3(s) + Sm2O3(S) + Fe(s)) // YDT / CSZ // {Fe(s) + Fe0.95O(s)} / Pt(+) and (-)Pt/{Fe(s) + Fe0.95O(S)} // CSZ // {SmFeO3(s) + Sm3Fe5O12(s) + Fe3O4(s) / Pt(+), were measured in the temperature ranges of 1005-1259 K and 1030-1252 K, respectively. The standard molar G of formation of solid SmFeO3 and Sm3Fe5O12 calculated by the least squares regression analysis of the data obtained in the current study, and data for Fe0.95O and Sm2O3 from the literature, are given by:
Delta(f)G(m)(0)(SmFeO3, s)/kj . mol(-1)(+/-2.0) = -1355.2 + 0.2643 .
Resumo:
The maintenance of chlorine residual is needed at all the points in the distribution system supplied with chlorine as a disinfectant. The propagation and level of chlorine in a distribution system is affected by both bulk and pipe wall reactions. It is well known that the field determination of wall reaction parameter is difficult. The source strength of chlorine to maintain a specified chlorine residual at a target node is also an important parameter. The inverse model presented in the paper determines these water quality parameters, which are associated with different reaction kinetics, either in single or in groups of pipes. The weighted-least-squares method based on the Gauss-Newton minimization technique is used for the estimation of these parameters. The validation and application of the inverse model is illustrated with an example pipe distribution system under steady state. A generalized procedure to handle noisy and bad (abnormal) data is suggested, which can be used to estimate these parameters more accurately. The developed inverse model is useful for water supply agencies to calibrate their water distribution system and to improve their operational strategies to maintain water quality.
Resumo:
The local structural information in the near-neighbor region of superionic conducting glass (AgBr)0.4(Ag2O)0.3(GeO2)0.3 has been estimated from the anomalous X-ray scattering (AXS) measurements using Ge and Br K absorption edges. The possible atomic arrangements in the near-neighbor region of this glass were obtained by coupling the results with the least-squares variational method so as to reproduce two differential intensity profiles for Ge and Br as well as the ordinary scattering profile. The coordination number of oxygen around Ge is found to be 3.6 at a distance of 0.176 nm, suggesting the GeO4 tetrahedral unit as the probable structural entity in this glass. Moreover, the coordination number of Ag around Br is estimated as 6.3 at a distance of 0.284 nm, suggesting an arrangement similar to that in crystalline AgBr.
Resumo:
In this article, an extension to the total variation diminishing finite volume formulation of the lattice Boltzmann equation method on unstructured meshes was presented. The quadratic least squares procedure is used for the estimation of first-order and second-order spatial gradients of the particle distribution functions. The distribution functions were extrapolated quadratically to the virtual upwind node. The time integration was performed using the fourth-order RungeKutta procedure. A grid convergence study was performed in order to demonstrate the order of accuracy of the present scheme. The formulation was validated for the benchmark two-dimensional, laminar, and unsteady flow past a single circular cylinder. These computations were then investigated for the low Mach number simulations. Further validation was performed for flow past two circular cylinders arranged in tandem and side-by-side. Results of these simulations were extensively compared with the previous numerical data. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Savitzky-Golay (S-G) filters are finite impulse response lowpass filters obtained while smoothing data using a local least-squares (LS) polynomial approximation. Savitzky and Golay proved in their hallmark paper that local LS fitting of polynomials and their evaluation at the mid-point of the approximation interval is equivalent to filtering with a fixed impulse response. The problem that we address here is, ``how to choose a pointwise minimum mean squared error (MMSE) S-G filter length or order for smoothing, while preserving the temporal structure of a time-varying signal.'' We solve the bias-variance tradeoff involved in the MMSE optimization using Stein's unbiased risk estimator (SURE). We observe that the 3-dB cutoff frequency of the SURE-optimal S-G filter is higher where the signal varies fast locally, and vice versa, essentially enabling us to suitably trade off the bias and variance, thereby resulting in near-MMSE performance. At low signal-to-noise ratios (SNRs), it is seen that the adaptive filter length algorithm performance improves by incorporating a regularization term in the SURE objective function. We consider the algorithm performance on real-world electrocardiogram (ECG) signals. The results exhibit considerable SNR improvement. Noise performance analysis shows that the proposed algorithms are comparable, and in some cases, better than some standard denoising techniques available in the literature.
Resumo:
We address the classical problem of delta feature computation, and interpret the operation involved in terms of Savitzky- Golay (SG) filtering. Features such as themel-frequency cepstral coefficients (MFCCs), obtained based on short-time spectra of the speech signal, are commonly used in speech recognition tasks. In order to incorporate the dynamics of speech, auxiliary delta and delta-delta features, which are computed as temporal derivatives of the original features, are used. Typically, the delta features are computed in a smooth fashion using local least-squares (LS) polynomial fitting on each feature vector component trajectory. In the light of the original work of Savitzky and Golay, and a recent article by Schafer in IEEE Signal Processing Magazine, we interpret the dynamic feature vector computation for arbitrary derivative orders as SG filtering with a fixed impulse response. This filtering equivalence brings in significantly lower latency with no loss in accuracy, as validated by results on a TIMIT phoneme recognition task. The SG filters involved in dynamic parameter computation can be viewed as modulation filters, proposed by Hermansky.