349 resultados para compressible fluids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quartic profile in terms of the normal distance from the wall has been taken and coefficients are evaluated by satisfying one more boundary condition on the wall than the usual one. By doing so, the limitations about the Reynolds number of the quartic profile adopted by Lew (1949) has been removed. The Kármán (1921) Momentum Integral Equation has been used to evaluate the various characteristics of the flow. A comparative study of Lew's quartic profile and exponential profile together with the quartic profile of the present paper has been undertaken and the graphs for the various characteristics of the flow for a number of Mach numbers and suction coefficients have been drawn. At the end, certain conclusions of general nature about the velocity profiles have been recorded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The laminar boundary layer over a stationary infinite disk induced by a rotating compressible fluid is considered. The free stream velocity has been taken as tangential and varies as a power of radius, i.e. v∞ ˜ r−n. The effect of the axial magnetic field and suction is also included in the analysis. An implicit finite difference scheme is employed to the governing similarity equations for numerical computations. Solutions are studied for various values of disk to fluid temperature ratio and for values of n between 1 and −1. In the absence of the magnetic field and suction, velocity profiles exhibit oscillations. It has been observed that for a hot disk in the presence of a magnetic field the boundary layer solutions decay algebraically instead of decaying exponentially. In the absence of the magnetic field and suction, the solution of the similarity equations exists only for a certain range of n.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-similar solutions of the unsteady compressible laminar boundary layer flow over two-dimensional and axisymmetric bodies at the stagnation point with mass transfer are studied for all the second-order boundary layer effects when the free stream velocity varies arbitrarily with time. The set of partial differential equations governing the unsteady compressible second-order boundary layers representing all the effects are derived for the first time. These partial differential equations are solved numerically using an implicit finite-difference scheme. The results are obtained for two particular unsteady free stream velocity distributions: (a) an accelerating stream and (b) a fluctuating stream. It is observed that the total skin friction and heat transfer are strongly affected by the surface mass transfer and wall temperature. However, their variation with time is significant only for large times. The second-order boundary layer effects are found to be more pronounced in the case of no mass transfer or injection as compared to that for suction. Résumé Des solutions semi-similaires d'écoulement variable compressible de couche limite sur des corps bi-dimensionnels thermique, sont étudiées pour tous les effets de couche limite du second ordre, lorsque la vitesse de l'écoulement libre varie arbitrairement avec le temps. Le systéme d'équations aux dérivées partielles représentant tous les effets est écrit pour la premiére fois. On le résout numériquement á l'aide d'un schéma implicite aux différences finies. Les résultats sont obtenus pour deux cas de vitesse variable d'écoulement libre: (a) un écoulement accéléré et (b) un écoulement fluctuant. On observe que le frottement pariétal total et le transfert de chaleur sont fortement affectés par le transfert de masse et la température pariétaux. Néanmoins, leur variation avec le temps est sensible seulement pour des grandes durées. Les effets sont trouvés plus prononcés dans le cas de l'absence du transfert de masse ou de l'injection par rapport au cas de l'aspiration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady laminar compressible boundary-layer swirling flow with variable gas properties and mass transfer through a conical nozzle, and a diffuser with a highly cooled wall has been studied. The partial differential equations governing the nonsimilar flow have been transformed to a system of coordinates using modified Lees transformation. The resulting equations are transformed into coordinates having finite ranges by means of a transformation which maps an infinite region into a finite region. The ensuing equations are then solved numerically using an implicit finite-difference scheme. The results indicate that the variation of the density-viscosity product across the boundary layer and mass transfer have strong effect on the skin friction and heat transfer. Separationless flow along the entire length of the diffuser can be obtained by applying suction. The results are found to be in good agreement with those of the local nonsimilarity method but they differ appreciably from those of the local similarity method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The axisymmetric steady laminar compressible boundary layer swirling flow of a gas with variable properties in a nozzle has been investigated. The partial differential equations governing the non-similar flow have been transformed into new co-ordinates having finite ranges by means of a transformation which maps an infinite range into a finite one. The resulting equations have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for compressible swirling flow through a convergent conical nozzle. The results indicate that the swirl exerts a strong influence on the longitudinal skin friction, but its effect on the tangential skin friction and heat transfer is comparatively small. The effect of the variation of the density-viscosity product across the boundary layer is appreciable only at low-wall temperature. The results are in good agreement with those of the local-similarity method for small values of the longitudinal distance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of surface mass transfer velocities having normal, principal and transverse direction components (�vectored� suction and injection) on the steady, laminar, compressible boundary layer at a three-dimensional stagnation point has been investigated both for nodal and saddle points of attachment. The similarity solutions of the boundary layer equations were obtained numerically by the method of parametric differentiation. The principal and transverse direction surface mass transfer velocities significantly affect the skin friction (both in the principal and transverse directions) and the heat transfer. Also the inadequacy of assuming a linear viscosity-temperature relation at low-wall temperatures is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A continuum model based on the critical state theory of soil mechanics is used to generate stress and density profiles, and to compute discharge velocities for the plane flow of cohesionless materials. Two types of yield loci are employed, namely, a yield locus with a corner, and a smooth yield locus. The yield locus with a corner leads to computational difficulties. For the smooth yield locus, results are found to be relatively insensitive to the shape of the yield locus, the location of the upper traction-free surface and the density specified on this surface. This insensitivity arises from the existence of asymptotic stress and density fields, to which the solution tends to converge on moving down the hopper. Numerical and approximate analytical solutions are obtained for these fields and the latter is used to derive an expression for the discharge velocity. This relation predicts discharge velocities to within 13% of the exact (numerical) values. While the assumption of incompressibility has been frequently used in the literature, it is shown here that in some cases, this leads to discharge velocities which are significantly higher than those obtained by the incorporation of density variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments and computer simulation studies have revealed existence of rich dynamics in the orientational relaxation of molecules in confined systems such as water in reverse micelles, cyclodextrin cavities, and nanotubes. Here we introduce a novel finite length one dimensional Ising model to investigate the propagation and the annihilation of dynamical correlations in finite systems and to understand the intriguing shortening of the orientational relaxation time that has been reported for small sized reverse micelles. In our finite sized model, the two spins at the two end cells are oriented in the opposite directions to mimic the effects of surface that in real system fixes water orientation in the opposite directions. This produces opposite polarizations to propagate inside from the surface and to produce bulklike condition at the center. This model can be solved analytically for short chains. For long chains, we solve the model numerically with Glauber spin flip dynamics (and also with Metropolis single-spin flip Monte Carlo algorithm). We show that model nicely reproduces many of the features observed in experiments. Due to the destructive interference among correlations that propagate from the surface to the core, one of the rotational relaxation time components decays faster than the bulk. In general, the relaxation of spins is nonexponential due to the interplay between various interactions. In the limit of strong coupling between the spins or in the limit of low temperature, the nature of relaxation of the spins undergoes a qualitative change with the emergence of a homogeneous dynamics where decay is predominantly exponential, again in agreement with experiments. (C) 2010 American Institute of Physics. doi: 10.1063/1.3474948]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsteady laminar compressible boundary-layer flow with variable properties at a three-dimensional stagnation point for both cold and hot walls has been studied for the case when the velocity of the incident stream varies arbitrarily with time. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for two particular unsteady free-stream velocity distributions: (i) an accelerating stream and (ii) a fluctuating stream. The results indicate that the variation of the density-viscosity product across the boundary layer, the wall temperature and the nature of stagnation point significantly affect the skin friction and heat transfer.