88 resultados para coded character set
Resumo:
In multiuser communication on the uplink, all subscribed users may not be active simultaneously. This leads to sparsity in the activity pattern in the users' transmissions, which can be exploited in the multiuser MIMO receiver at the base station (BS). Because of no transmissions from inactive users, joint detection at the BS has to consider an augmented signal set that includes zero. In this paper, we propose a receiver that exploits this inactivity-induced sparsity and considers the zero-augmented signal set. The proposed receiver is based on Markov Chain Monte Carlo techniques. Near-optimal performance and increased system capacity (in terms of number of users in the system) are demonstrated. For example, a multiuser MIMO system with N = 32 receive antennas at the BS and an user activity factor of 0.2 supports 51 uplink users meeting a QoS of 10(-3) coded bit error rate.
Resumo:
We propose a set of metrics that evaluate the uniformity, sharpness, continuity, noise, stroke width variance,pulse width ratio, transient pixels density, entropy and variance of components to quantify the quality of a document image. The measures are intended to be used in any optical character recognition (OCR) engine to a priori estimate the expected performance of the OCR. The suggested measures have been evaluated on many document images, which have different scripts. The quality of a document image is manually annotated by users to create a ground truth. The idea is to correlate the values of the measures with the user annotated data. If the measure calculated matches the annotated description,then the metric is accepted; else it is rejected. In the set of metrics proposed, some of them are accepted and the rest are rejected. We have defined metrics that are easily estimatable. The metrics proposed in this paper are based on the feedback of homely grown OCR engines for Indic (Tamil and Kannada) languages. The metrics are independent of the scripts, and depend only on the quality and age of the paper and the printing. Experiments and results for each proposed metric are discussed. Actual recognition of the printed text is not performed to evaluate the proposed metrics. Sometimes, a document image containing broken characters results in good document image as per the evaluated metrics, which is part of the unsolved challenges. The proposed measures work on gray scale document images and fail to provide reliable information on binarized document image.
Resumo:
Research in the field of recognizing unlimited vocabulary, online handwritten Indic words is still in its infancy. Most of the focus so far has been in the area of isolated character recognition. In the context of lexicon-free recognition of words, one of the primary issues to be addressed is that of segmentation. As a preliminary attempt, this paper proposes a novel script-independent, lexicon-free method for segmenting online handwritten words to their constituent symbols. Feedback strategies, inspired from neuroscience studies, are proposed for improving the segmentation. The segmentation strategy has been tested on an exhaustive set of 10000 Tamil words collected from a large number of writers. The results show that better segmentation improves the overall recognition performance of the handwriting system.
Resumo:
Analysis of high resolution satellite images has been an important research topic for urban analysis. One of the important features of urban areas in urban analysis is the automatic road network extraction. Two approaches for road extraction based on Level Set and Mean Shift methods are proposed. From an original image it is difficult and computationally expensive to extract roads due to presences of other road-like features with straight edges. The image is preprocessed to improve the tolerance by reducing the noise (the buildings, parking lots, vegetation regions and other open spaces) and roads are first extracted as elongated regions, nonlinear noise segments are removed using a median filter (based on the fact that road networks constitute large number of small linear structures). Then road extraction is performed using Level Set and Mean Shift method. Finally the accuracy for the road extracted images is evaluated based on quality measures. The 1m resolution IKONOS data has been used for the experiment.
Resumo:
A decode and forward protocol based Trellis Coded Modulation (TCM) scheme for the half-duplex relay channel, in a Rayleigh fading environment, is presented. The proposed scheme can achieve any spectral efficiency greater than or equal to one bit per channel use (bpcu). A near-ML decoder for the suggested TCM scheme is proposed. It is shown that the high Signal to Noise Ratio (SNR) performance of this near-ML decoder approaches the performance of the optimal ML decoder. Based on the derived Pair-wise Error Probability (PEP) bounds, design criteria to maximize the diversity and coding gains are obtained. Simulation results show a large gain in SNR for the proposed TCM scheme over uncoded communication as well as the direct transmission without the relay.
Resumo:
We present here, an experimental set-up developed for the first time in India for the determination of mixing ratio and carbon isotopic ratio of air-CO2. The set-up includes traps for collection and extraction of CO2 from air samples using cryogenic procedures, followed by the measurement of CO2 mixing ratio using an MKS Baratron gauge and analysis of isotopic ratios using the dual inlet peripheral of a high sensitivity isotope ratio mass spectrometer (IRMS) MAT 253. The internal reproducibility (precision) for the PC measurement is established based on repeat analyses of CO2 +/- 0.03 parts per thousand. The set-up is calibrated with international carbonate and air-CO2 standards. An in-house air-CO2 mixture, `OASIS AIRMIX' is prepared mixing CO2 from a high purity cylinder with O-2 and N-2 and an aliquot of this mixture is routinely analyzed together with the air samples. The external reproducibility for the measurement of the CO2 mixing ratio and carbon isotopic ratios are +/- 7 (n = 169) mu mol.mol(-1) and +/- 0.05 (n = 169) parts per thousand based on the mean of the difference between two aliquots of reference air mixture analyzed during daily operation carried out during November 2009-December 2011. The correction due to the isobaric interference of N2O on air-CO2 samples is determined separately by analyzing mixture of CO2 (of known isotopic composition) and N2O in varying proportions. A +0.2 parts per thousand correction in the delta C-13 value for a N2O concentration of 329 ppb is determined. As an application, we present results from an experiment conducted during solar eclipse of 2010. The isotopic ratio in CO2 and the carbon dioxide mixing ratio in the air samples collected during the event are different from neighbouring samples, suggesting the role of atmospheric inversion in trapping the emitted CO2 from the urban atmosphere during the eclipse.
Resumo:
In this paper, we explore fundamental limits on the number of tests required to identify a given number of ``healthy'' items from a large population containing a small number of ``defective'' items, in a nonadaptive group testing framework. Specifically, we derive mutual information-based upper bounds on the number of tests required to identify the required number of healthy items. Our results show that an impressive reduction in the number of tests is achievable compared to the conventional approach of using classical group testing to first identify the defective items and then pick the required number of healthy items from the complement set. For example, to identify L healthy items out of a population of N items containing K defective items, when the tests are reliable, our results show that O(K(L - 1)/(N - K)) measurements are sufficient. In contrast, the conventional approach requires O(K log(N/K)) measurements. We derive our results in a general sparse signal setup, and hence, they are applicable to other sparse signal-based applications such as compressive sensing also.
Resumo:
The contour tree is a topological abstraction of a scalar field that captures evolution in level set connectivity. It is an effective representation for visual exploration and analysis of scientific data. We describe a work-efficient, output sensitive, and scalable parallel algorithm for computing the contour tree of a scalar field defined on a domain that is represented using either an unstructured mesh or a structured grid. A hybrid implementation of the algorithm using the GPU and multi-core CPU can compute the contour tree of an input containing 16 million vertices in less than ten seconds with a speedup factor of upto 13. Experiments based on an implementation in a multi-core CPU environment show near-linear speedup for large data sets.
Resumo:
The design of modulation schemes for the physical layer network-coded two-way MIMO relaying scenario is considered, with the denoise-and-forward protocol which employs two phases: Multiple Access phase and Broadcast phase. It is shown that for MIMO two-way relaying, the minimum distance of the effective constellation at the relay becomes zero when all the rows of the channel fade coefficient matrix belong to a finite number of vector subspaces referred to as the singular fade subspaces. The singular fade subspaces can be classified into two kinds based on whether their harmful effects can be removed or not: (i) the removable and (ii) the non-removable singular fade subspaces. It is shown that network coding maps obtained by the completion of appropriate partially filled Latin Rectangles can remove the harmful effects of all the removable singular fade subspaces. For 2(lambda)-PSK signal set, the removable and non-removable singular fade subspaces are characterized and, it is shown that the number of non-removable singular fade subspaces is a small fraction of the total number of singular fade subspaces and this fraction tends to zero as the constellation size tends to infinity. The Latin Rectangles for the case when the end nodes use different number of antennas are shown to be obtainable from the Latin Squares for the case when they use the same number of antennas. Also, the network coding maps which remove all the removable singular singular fade subspaces are shown to be obtainable from a small set of Latin Squares. The removal of all the singular fade subspaces by properly choosing the network coding map, provides a gain of 5.5 dB over the conventional Exclusive-OR network coding, in a Rayleigh fading scenario with 2 antennas at the end nodes and one antenna at the relay node, for 4-PSK signal set.
Resumo:
In the design of modulation schemes for the physical layer network-coded two way relaying scenario with two phases (Multiple access (MA) Phase and Broadcast (BC) Phase), it was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference and all these network coding maps should satisfy a requirement called the exclusive law. In [11] the case in which the end nodes use M-PSK signal sets is extensively studied using Latin Squares. This paper deals with the case in which the end nodes use square M-QAM signal sets. In a fading scenario, for certain channel conditions, termed singular fade states, the MA phase performance is greatly reduced. We show that the square QAM signal sets lead to lesser number of singular fade states compared to PSK signal sets. Because of this, the complexity at the relay is enormously reduced. Moreover lesser number of overhead bits are required in the BC phase. We find the number of singular fade states for PAM and QAM signal sets used at the end nodes. The fade state γejθ = 1 is a singular fade state for M-QAM for all values of M and it is shown that certain block circulant Latin Squares remove this singular fade state. Simulation results are presented to show that QAM signal set perform better than PSK.
Resumo:
The design of modulation schemes for the physical layer network-coded three-way wireless relaying scenario is considered. The protocol employs two phases: Multiple Access (MA) phase and Broadcast (BC) phase with each phase utilizing one channel use. For the two-way relaying scenario, it was observed by Koike-Akino et al. [4], that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA phase and all these network coding maps should satisfy a requirement called exclusive law. This paper does the equivalent for the three-way relaying scenario. We show that when the three users transmit points from the same 4-PSK constellation, every such network coding map that satisfies the exclusive law can be represented by a Latin Cube of Second Order. The network code map used by the relay for the BC phase is explicitly obtained and is aimed at reducing the effect of interference at the MA stage.
Resumo:
The analysis of modulation schemes for the physical layer network-coded two way relaying scenario is presented which employs two phases: Multiple access (MA) phase and Broadcast (BC) phase. Depending on the signal set used at the end nodes, the minimum distance of the effective constellation seen at the relay becomes zero for a finite number of channel fade states referred as the singular fade states. The singular fade states fall into the following two classes: (i) the ones which are caused due to channel outage and whose harmful effect cannot be mitigated by adaptive network coding called the non-removable singular fade states and (ii) the ones which occur due to the choice of the signal set and whose harmful effects can be removed called the removable singular fade states. In this paper, we derive an upper bound on the average end-to-end Symbol Error Rate (SER), with and without adaptive network coding at the relay, for a Rician fading scenario. It is shown that without adaptive network coding, at high Signal to Noise Ratio (SNR), the contribution to the end-to-end SER comes from the following error events which fall as SNR-1: the error events associated with the removable and nonremovable singular fade states and the error event during the BC phase. In contrast, for the adaptive network coding scheme, the error events associated with the removable singular fade states fall as SNR-2, thereby providing a coding gain over the case when adaptive network coding is not used. Also, it is shown that for a Rician fading channel, the error during the MA phase dominates over the error during the BC phase. Hence, adaptive network coding, which improves the performance during the MA phase provides more gain in a Rician fading scenario than in a Rayleigh fading scenario. Furthermore, it is shown that for large Rician factors, among those removable singular fade states which have the same magnitude, those which have the least absolute value of the phase - ngle alone contribute dominantly to the end-to-end SER and it is sufficient to remove the effect of only such singular fade states.
Resumo:
The design of modulation schemes for the physical layer network-coded two way relaying scenario is considered with the protocol which employs two phases: Multiple access (MA) Phase and Broadcast (BC) Phase. It was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA Phase and all these network coding maps should satisfy a requirement called the exclusive law. We show that every network coding map that satisfies the exclusive law is representable by a Latin Square and conversely, and this relationship can be used to get the network coding maps satisfying the exclusive law. Using the structural properties of the Latin Squares for a given set of parameters, the problem of finding all the required maps is reduced to finding a small set of maps for M-PSK constellations. This is achieved using the notions of isotopic and transposed Latin Squares. Furthermore, the channel conditions for which the bit-wise XOR will perform well is analytically obtained which holds for all values of M (for M any power of 2). We illustrate these results for the case where both the end users use QPSK constellation.
Resumo:
Bulk Ge15Te85-xIn5Agx glasses are shown to exhibit electrical switching with switching/threshold voltages in the range of 70-120V for a sample thickness of 0.3 mm. Further, the samples exhibit threshold or memory behavior depending on the ON state current. The compositional studies confirm the presence of an intermediate phase in the range 8 <= x <= 16, revealed earlier by thermal studies. Further, SET-RESET studies have been performed by these glasses using a triangular pulse of 6 mA amplitude (for SET) and 21 mA amplitude (for RESET). Raman studies of the samples after the SET and RESET operations reveal that the SET state is a crystalline phase which is obtained by thermal annealing and the RESET state is the glassy state, similar to the as-quenched samples. It is interesting to note that the samples in the intermediate phase, especially compositions at x = 10, 12, and 14 withstand more set-reset cycles. This indicates compositions in the intermediate phase are better suited for phase change memory applications. (C) 2014 AIP Publishing LLC.
Resumo:
It is essential to accurately estimate the working set size (WSS) of an application for various optimizations such as to partition cache among virtual machines or reduce leakage power dissipated in an over-allocated cache by switching it OFF. However, the state-of-the-art heuristics such as average memory access latency (AMAL) or cache miss ratio (CMR) are poorly correlated to the WSS of an application due to 1) over-sized caches and 2) their dispersed nature. Past studies focus on estimating WSS of an application executing on a uniprocessor platform. Estimating the same for a chip multiprocessor (CMP) with a large dispersed cache is challenging due to the presence of concurrently executing threads/processes. Hence, we propose a scalable, highly accurate method to estimate WSS of an application. We call this method ``tagged WSS (TWSS)'' estimation method. We demonstrate the use of TWSS to switch-OFF the over-allocated cache ways in Static and Dynamic NonUniform Cache Architectures (SNUCA, DNUCA) on a tiled CMP. In our implementation of adaptable way SNUCA and DNUCA caches, decision of altering associativity is taken by each L2 controller. Hence, this approach scales better with the number of cores present on a CMP. It gives overall (geometric mean) 26% and 19% higher energy-delay product savings compared to AMAL and CMR heuristics on SNUCA, respectively.