138 resultados para cobalt-rich crusts
Resumo:
The electrical properties of Co1−xZnxFe2O4 (x=0–1) spinel ferrites were investigated by impedance spectroscopy. The grain‐boundary resistance was found to increase as a function of composition up to x=0.6, and decreases beyond x=0.6. The variation in the bulk resistance and the activation energy as a function of composition is found to exhibit a similar trend whereas the grain resistance appears to be an independent parameter. The observed results suggest that the bulk properties of solid solution spinel ferrites are primarily controlled by the grain‐boundary phase.
Resumo:
Cobalt(II) complexes of terpyridine bases Co(L)(2)](ClO4)(2) (1-3), where L is 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy in 1), 4'-(9-anthracenyl)-2,2':6',2''-terpyridine (an-tpy in 2) and 4'-(1-pyrenyl)-2,2':6',2''-terpyridine (py-tpy in 3), are prepared and their photo-induced DNA and protein cleavage activity and photocytotoxic property in HeLa cells studied. The 1 : 2 electrolytic and three-electron paramagnetic complexes show a visible band near 550 nm in DMF-Tris-HCl buffer. The complexes 1-3 show emission spectral bands at 355, 421 and 454 nm, respectively, when excited at 287, 368 and 335 nm. The quantum yield values for 1-3 in DMF-H2O (2 : 1 v/v) are 0.025, 0.060 and 0.28, respectively. The complexes are redox active in DMF-0.1 M TBAP. The Co(III)-Co(II) and Co(II)-Co(I) couples appear as quasi-reversible cyclic voltammetric responses near 0.2 and -0.7 V vs. SCE, respectively. Complexes 2 and 3 are avid binders to calf thymus DNA giving K-b value of similar to 10(6) M-1. The complexes show chemical nuclease activity. Complexes 2 and 3 exhibit oxidative cleavage of pUC19 DNA in UV-A and visible light. The DNA photocleavage reaction of 3 at 365 nm shows formation of singlet oxygen and hydroxyl radical species, while only hydroxyl radical formation is evidenced in visible light. Complexes 2 and 3 show non-specific photo-induced bovine serum albumin protein cleavage activity at 365 nm. The an-tpy and py-tpy complexes exhibit significant photocytotoxicity in HeLa cervical cancer cells on exposure to visible light giving IC50 values of 24.2 and 7.6 mu M, respectively. Live cell imaging study shows accumulation of the complexes in the cytosol of HeLa cancer cells.
Resumo:
A complete cDNA encoding a novel hybrid Pro-rich protein (HyPRP) was identified by differentially screening 3x10(4) recombinant plaques of a Cuscuta reflexa cytokinin-induced haustorial cDNA library constructed in lambda gt10. The nucleotide (nt) sequence consists of: (i) a 424-bp 5'-non coding region having five start codons (ATGs) and three upstream open reading frames (uORFs); (ii) an ORF of 987 bp with coding potential for a 329-amino-acid (aa) protein of M(r), 35203 with a hydrophobic N-terminal region including a stretch of nine consecutive Phe followed by a Pro-rich sequence and a Cys-rich hydrophobic C terminus; and (iii) a 178-bp 3'-UTR (untranslated region). Comparison of the predicted aa sequence with the NBRF and SWISSPROT databases and with a recent report of an embryo-specific protein of maize [Jose-Estanyol et al., Plant Cell 4 (1992) 413-423] showed it to be similar to the class of HyPRPs encoded by genes preferentially expressed in young tomato fruits, maize embryos and in vitro-cultured carrot embryos. Northern analysis revealed an approx. 1.8-kb mRNA of this gene expressed in the subapical region of the C. reflexa vine which exhibited maximum sensitivity to cytokinin in haustorial induction.
Resumo:
Are evaporation of graphite with Fe, Co and Ni yields two distinct types of metal nanoparticles, wrapped in graphitic layers and highly resistant to oxidation. Electron microscopy shows that the metal particles (10-40 nm) in the stub region are encapsulated in carbon onions, the particles in the soot being considerably smaller (2-15 nm). The metal particles in the soot are either ferromagnetic with lowered Curie temperatures or superparamagnetic.
Resumo:
The synthesis, properties and crystal structure of the cage complex (1-hydroxy-8-methyl-3,6,10,13,15,18-hexaazabicyclo[6.6.5]nonadecane)cobalt(III) chloride hydrate ([Co(Me,OH-absar)] C13.H2O) are reported. The mechanism of the formation of this contracted cavity cage from a nitro-capped hexaazabicycloicosane type cage has been investigated. Treatment of (1-methyl-8-nitro-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane)cobalt(III) chloride ([Co(Me,NO2-sar)] 3+) with excess base in aqueous solution leads initially to rapid (t1/2 < 1 ms) and reversible deprotonation of one coordinated secondary amine. This species undergoes a retro-Mannich type reaction and imine hydrolysis (t1/2 almost-equal-to 90 s). Quenching the reaction with acid gives rise to a pair of isomeric intermediate species which have been isolated and characterized. They have a pendant arm macrocyclic structure, resulting from the loss of a methylene unit from one of the arms of the cap. Heating either isomer in aqueous solution gives the new cage compound with the contracted cap. It is postulated that this occurs through a Nef reaction, resulting in the formation of a ketone which then condenses with the coordinated primary amine. A comparison with the corresponding bicycloicosane analogue indicates a reduced chromophoric cavity size for the contracted cage. The reduction potential of the cobalt(III)/cobalt(II) couple is 170 mV more negative for the smaller cage, and, in the electronic spectrum of the cobalt(III) complex, the d-d transitions are both shifted to higher energy, corresponding to a stronger ligand field.
Resumo:
Two intercalatable Co-II-complexes of anthryl or anthraquinone attached bispicolylamine derivatives cleave plasmid pTZ19R DNA spontaneously upon exposure to visible light under ambient conditions.
Resumo:
EHT calculations on heterotrinuclear cobalt(III) complexes of the type [Cu{(OH)(2)Co(L(4))}(2)](4+) where L(4) denotes (en)(2) or (NH3)(4), en = ethylenediamine and their component species have been carried out. The results regarding bonding and structure for the trinuclear complexes are compared with those for the monomer components such as [Co(en)(2)(OH)(2)](+), [Co(NH3)(4)(OH)(2)](+) and [Cu(OH)(4)](2-) are discussed.
Resumo:
Mesoporous MCM-41 type silicas containing molybdenum and cobalt have been prepared with pore sizes in the range 30-38 Angstrom and 54-59 Angstrom. Catalytic properties of these materials have been examined with respect to the oxidation of cyclooctene and aniline.
Resumo:
Electrochemical precipitation of cobalt(II) hydroxide from nitrate solutions containing organic molecules, such as glucose, fructose, lactose, glycerol, and citric acid, yields a new modification of cobalt (II) hydroxide (a = 3.09 +/- 0.03 Angstrom, c = 23.34 +/- 0.36 Angstrom) that is isostructural with cu-nickel hydroxide; precipitation in the absence of organic additives gives the stable, brucite-like, beta-CO (OH)(2). (C) 1995 Academic Press, Inc.
Resumo:
Transition protein-2 (TP2), isolated from rat testes, was recently shown to be a zinc metalloprotein. We have now carried out a detailed analysis of the DNA condensing properties of TP2 with various polynucleotides using circular dichroism spectroscopy. The condensation of the alternating copolymers by TP2 (incubated with 10 mu M ZnSO4), namely, poly(dG-dC). poly(dG-dC) and poly(dA-dT). poly(dA-dT), was severalfold higher than condensation of either of the homoduplexes poly(dG). poly-(dC) and poly(dA). poly(dT) or rat oligonucleosomal DNA. Between the two alternating copolymers, poly(dG-dC). poly(dG-dC) was condensed 3.2-fold more effectively than poly(dA-dT). poly(dA-dT). Preincubation of TP2 with 5 mM EDTA significantly reduced its DNA-condensing property. Interestingly, condensation of the alternating copolymer poly(dI-dC). poly(dI-dC) by TP2 was much less as compared to that of poly(dG-dC). poly(dG-dC). The V8 protease-derived N-terminal fragment (88 aa) condensed poly(dA-dT). poly(dA-dT) to a very small extent but did not have any effect on poly(dG-dC). poly-(dG-dC). The C-terminal fragment (28 aa) was able to condense poly(dA-dT) . poly(dA-dT) more effectively than poly(dG-dC). poly(dG-dC). These results suggest that TP2 in its zinc-coordinated form condenses GC-rich polynucleotides much more effectively than other types of polynucleotides. Neither the N-terminal two-thirds of TP2 which is the zinc-binding domain nor the C-terminal basic domain are as effective as intact TP2 in bringing about condensation of DNA.
Resumo:
The structural state of K-feldspars in the quartzofeldspathic gneisses, charnockites, metapelites and pegmatites from the southern Kamataka, northern Tamil Nadu and southern Kerala high-grade regions of southern India has been characterized using petrographic and powder X-ray diffraction methods. The observed distribution pattern of structural state with a preponderance of disordered K-feldspar polymorphs in granulites compared to the ordered microclines in the amphibolite facies rocks is interpreted to reflect principally the varying H2O contents in the metamorphic-metasomatic fluids across metamorphic grade. The K-feldspars in the pegmatites of granitic derivation and in a pegmatite of inferred metamorphic origin also point to the important role of aqueous fluids in their structural state.
Resumo:
The synthesis and thermal analysis studies of several hydroxobridged homo and hetero trinuclear cobalt(III) complexes are reported. The complexes are of the type [M(H2O)(x) {(OH)(2)Co(en)(2)}(2)](SO4)(2). nH(2)O and [M(H2O)(x){(OH)(2)Co(NH3)(4)}(2)] (SO4)(2). nH(2)O where en denotes ethylenediamine and M =Co(II), Ni(II), Cu(II) and Zn(II) with x=0 for Cu(II), and 2 for other metal ions, and n =3, 4 or 5. The TG and DTA studies of these compounds show that one or more intermediate compounds are formed in each case before the metal oxides are produced.
Resumo:
Aqueous solutions of acetates and nitrates of zinc and cobalt have been spray decomposed to study the production of extended solid solutions in the ZnO-CoO system. Examination of the products of a variety of synthesis conditions indicates that up to 70% CoO may be retained in the solid solution in the wurzite phase, even though a comparison of the equilibrium solubility in the phase diagram might be expected to favor the formation of a rock-salt-based solid solution.
Resumo:
Several pi-electron rich fluorescent aromatic compounds containing trimethylsilylethynyl functionality have been synthesized by employing Sonogashira coupling reaction and they were characterized fully by NMR (H-1, C-13)/IR spectroscopy. Incorporation of bulky trimethylsilylethynyl groups on the peripheral of the fluorophores prevents self-quenching of the initial intensity through pi-pi interaction and thereby maintains the spectroscopic stability in solution. These compounds showed fluorescence behavior in chloroform solution and were used as selective fluorescence sensors for the detection of electron deficient nitroaromatics. All these fluorophores showed the largest quenching response with high selectivity for nitroaromatics among the various electron deficient aromatic compounds tested. Quantitative analysis of the fluorescence titration profile of 9,10-bis(trimethylsilylethynyl) anthracene with picric acid provided evidence that this particular fluorophore detects picric acid even at ppb level. A sharp visual detection of 2,4,6-trinitrotoluene was observed upon subjecting 1,3,6,8-tetrakis (trimethylsilylethynyl) pyrene fluorophore to increasing quantities of 2,4,6-trinitrotoluene in chloroform. Furthermore, thin film of the fluorophores was made by spin coating of a solution of 1.0 x 10(-3) M in chloroform or dichloromethane on a quartz plate and was used for the detection of vapors of nitroaromatics at room temperature. The vapor-phase sensing experiments suggested that the sensing process is reproducible and quite selective for nitroaromatic compounds. Selective fluorescence quenching response including a sharp visual color change for nitroaromatics makes these fluorophores as promising fluorescence sensory materials for nitroaromatic compounds (NAC) with a detection limit of even ppb level as judged with picric acid.
Resumo:
We have investigated the microstructure of thin films grown by metal-organic chemical vapour deposition using a beta-diketonate complex of cobalt, namely cobalt (11) acetylacetonate. Films were deposited on three different substrates: Si(100), thermally oxidised silicon [SiO2/Si(100)] and glass at the same time. As-grown films were characterised by X-ray diffraction, scanning electron microscopy, scanning tunnelling microscopy, atomic force microscopy and secondary ion mass spectrometry. Electrical resistivity was measured for all the films as a function of temperature. We found that films have very fine grains, resulting in high electrical resistivity Further, film microstructure has a strong dependence on the nature of the substrate and there is diffusion of silicon and oxygen into cobalt from the substrate. (C) 2002 Elsevier Science B.V. All rights reserved.