86 resultados para branch number
Resumo:
The rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges, so that every pair of vertices is connected by at least one path in which no two edges are colored the same. Our main result is that rc(G) <= inverted right perpendicularn/2inverted left perpendicular for any 2-connected graph with at least three vertices. We conjecture that rc(G) <= n/kappa + C for a kappa-connected graph G of order n, where C is a constant, and prove the conjecture for certain classes of graphs. We also prove that rc(G) < (2 + epsilon)n/kappa + 23/epsilon(2) for any epsilon > 0.
Resumo:
This paper presents a method for placement of Phasor Measurement Units, ensuring the monitoring of vulnerable buses which are obtained based on transient stability analysis of the overall system. Real-time monitoring of phase angles across different nodes, which indicates the proximity to instability, the very purpose will be well defined if the PMUs are placed at buses which are more vulnerable. The issue is to identify the key buses where the PMUs should be placed when the transient stability prediction is taken into account considering various disturbances. Integer Linear Programming technique with equality and inequality constraints is used to find out the optimal placement set with key buses identified from transient stability analysis. Results on IEEE-14 bus system are presented to illustrate the proposed approach.
Resumo:
The rainbow connection number of a connected graph is the minimum number of colors needed to color its edges, so that every pair of its vertices is connected by at least one path in which no two edges are colored the same. In this article we show that for every connected graph on n vertices with minimum degree delta, the rainbow connection number is upper bounded by 3n/(delta + 1) + 3. This solves an open problem from Schiermeyer (Combinatorial Algorithms, Springer, Berlin/Hiedelberg, 2009, pp. 432437), improving the previously best known bound of 20n/delta (J Graph Theory 63 (2010), 185191). This bound is tight up to additive factors by a construction mentioned in Caro et al. (Electr J Combin 15(R57) (2008), 1). As an intermediate step we obtain an upper bound of 3n/(delta + 1) - 2 on the size of a connected two-step dominating set in a connected graph of order n and minimum degree d. This bound is tight up to an additive constant of 2. This result may be of independent interest. We also show that for every connected graph G with minimum degree at least 2, the rainbow connection number, rc(G), is upper bounded by Gc(G) + 2, where Gc(G) is the connected domination number of G. Bounds of the form diameter(G)?rc(G)?diameter(G) + c, 1?c?4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, asteroidal triple-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree delta at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G)?3.radius(G). In most of these cases, we also demonstrate the tightness of the bounds.
Resumo:
A $k$-box $B=(R_1,...,R_k)$, where each $R_i$ is a closed interval on the real line, is defined to be the Cartesian product $R_1\times R_2\times ...\times R_k$. If each $R_i$ is a unit length interval, we call $B$ a $k$-cube. Boxicity of a graph $G$, denoted as $\boxi(G)$, is the minimum integer $k$ such that $G$ is an intersection graph of $k$-boxes. Similarly, the cubicity of $G$, denoted as $\cubi(G)$, is the minimum integer $k$ such that $G$ is an intersection graph of $k$-cubes. It was shown in [L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan: Representing graphs as the intersection of axis-parallel cubes. MCDES-2008, IISc Centenary Conference, available at CoRR, abs/cs/ 0607092, 2006.] that, for a graph $G$ with maximum degree $\Delta$, $\cubi(G)\leq \lceil 4(\Delta +1)\log n\rceil$. In this paper, we show that, for a $k$-degenerate graph $G$, $\cubi(G) \leq (k+2) \lceil 2e \log n \rceil$. Since $k$ is at most $\Delta$ and can be much lower, this clearly is a stronger result. This bound is tight. We also give an efficient deterministic algorithm that runs in $O(n^2k)$ time to output a $8k(\lceil 2.42 \log n\rceil + 1)$ dimensional cube representation for $G$. An important consequence of the above result is that if the crossing number of a graph $G$ is $t$, then $\boxi(G)$ is $O(t^{1/4}{\lceil\log t\rceil}^{3/4})$ . This bound is tight up to a factor of $O((\log t)^{1/4})$. We also show that, if $G$ has $n$ vertices, then $\cubi(G)$ is $O(\log n + t^{1/4}\log t)$. Using our bound for the cubicity of $k$-degenerate graphs we show that cubicity of almost all graphs in $\mathcal{G}(n,m)$ model is $O(d_{av}\log n)$, where $d_{av}$ denotes the average degree of the graph under consideration. model is O(davlogn).
Resumo:
In order to survive and replicate in a variety of stressful conditions during its life cycle, Mycobacteriumtuberculosis must possess mechanisms to safeguard the integrity of the genome. Although DNA repair and recombination related genes are thought to play key roles in the repair of damaged DNA in all organisms, so far only a few of them have been functionally characterized in the tubercle bacillus. In this study, we show that M.tuberculosis RecG (MtRecG) expression was induced in response to different genotoxic agents. Strikingly, expression of MtRecG in Escherichiacoli recG mutant strain provided protection against mitomycin C, methyl methane sulfonate and UV induced cell death. Purified MtRecG exhibited higher binding affinity for the Holliday junction (HJ) compared with a number of canonical recombinational DNA repair intermediates. Notably, although MtRecG binds at the core of the mobile and immobile HJs, and with higher binding affinity for the immobile HJ, branch migration was evident only in the case of the mobile HJ. Furthermore, immobile HJs stimulate MtRecG ATPase activity less efficiently than mobile HJs. In addition to HJ substrates, MtRecG exhibited binding affinity for a variety of branched DNA structures including three-way junctions, replication forks, flap structures, forked duplex and a D-loop structure, but demonstrated strong unwinding activity on replication fork and flap DNA structures. Together, these results support that MtRecG plays an important role in processes related to DNA metabolism under normal as well as stress conditions.
Resumo:
Ab initio GW calculations are a standard method for computing the spectroscopic properties of many materials. The most computationally expensive part in conventional implementations of the method is the generation and summation over the large number of empty orbitals required to converge the electron self-energy. We propose a scheme to reduce the summation over empty states by the use of a modified static remainder approximation, which is simple to implement and yields accurate self-energies for both bulk and molecular systems requiring a small fraction of the typical number of empty orbitals.
Resumo:
The timer-based selection scheme is a popular, simple, and distributed scheme that is used to select the best node from a set of available nodes. In it, each node sets a timer as a function of a local preference number called a metric, and transmits a packet when its timer expires. The scheme ensures that the timer of the best node, which has the highest metric, expires first. However, it fails to select the best node if another node transmits a packet within Delta s of the transmission by the best node. We derive the optimal timer mapping that maximizes the average success probability for the practical scenario in which the number of nodes in the system is unknown but only its probability distribution is known. We show that it has a special discrete structure, and present a recursive characterization to determine it. We benchmark its performance with ad hoc approaches proposed in the literature, and show that it delivers significant gains. New insights about the optimality of some ad hoc approaches are also developed.
Resumo:
Let I be an m-primary ideal of a Noetherian local ring (R, m) of positive dimension. The coefficient e(1)(I) of the Hilbert polynomial of an I-admissible filtration I is called the Chern number of I. A formula for the Chern number has been derived involving the Euler characteristic of subcomplexes of a Koszul complex. Specific formulas for the Chern number have been given in local rings of dimension at most two. These have been used to provide new and unified proofs of several results about e(1)(I).
Resumo:
A dynamical instability is observed in experimental studies on micro-channels of rectangular cross-section with smallest dimension 100 and 160 mu m in which one of the walls is made of soft gel. There is a spontaneous transition from an ordered, laminar flow to a chaotic and highly mixed flow state when the Reynolds number increases beyond a critical value. The critical Reynolds number, which decreases as the elasticity modulus of the soft wall is reduced, is as low as 200 for the softest wall used here (in contrast to 1200 for a rigid-walled channel) The instability onset is observed by the breakup of a dye-stream introduced in the centre of the micro-channel, as well as the onset of wall oscillations due to laser scattering from fluorescent beads embedded in the wall of the channel. The mixing time across a channel of width 1.5 mm, measured by dye-stream and outlet conductance experiments, is smaller by a factor of 10(5) than that for a laminar flow. The increased mixing rate comes at very little cost, because the pressure drop (energy requirement to drive the flow) increases continuously and modestly at transition. The deformed shape is reconstructed numerically, and computational fluid dynamics (CFD) simulations are carried out to obtain the pressure gradient and the velocity fields for different flow rates. The pressure difference across the channel predicted by simulations is in agreement with the experiments (within experimental errors) for flow rates where the dye stream is laminar, but the experimental pressure difference is higher than the simulation prediction after dye-stream breakup. A linear stability analysis is carried out using the parallel-flow approximation, in which the wall is modelled as a neo-Hookean elastic solid, and the simulation results for the mean velocity and pressure gradient from the CFD simulations are used as inputs. The stability analysis accurately predicts the Reynolds number (based on flow rate) at which an instability is observed in the dye stream, and it also predicts that the instability first takes place at the downstream converging section of the channel, and not at the upstream diverging section. The stability analysis also indicates that the destabilization is due to the modification of the flow and the local pressure gradient due to the wall deformation; if we assume a parabolic velocity profile with the pressure gradient given by the plane Poiseuille law, the flow is always found to be stable.
Resumo:
In this paper control of oblique vortex shedding in the wake behind a straight circular cylinder is explored experimentally and computationally. Towards this, steady rotation of the cylinder about its axis is used as a control device. Some limited studies are also performed with a stepped circular cylinder, where at the step the flow is inevitably three-dimensional irrespective of the rotation rate. When there is no rotation, the vortex shedding pattern is three dimensional as described in many previous studies. With a non-zero rotation rate, it is demonstrated experimentally as well as numerically that the shedding pattern becomes more and more two-dimensional. At sufficiently high rotation rates, the vortex shedding is completely suppressed.
Resumo:
Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we propose a quantum method for generation of random numbers based on bosonic stimulation. Randomness arises through the path-dependent indeterministic amplification of two competing bosonic modes. We show that the process provides an efficient method for macroscopic extraction of microscopic randomness.
Resumo:
The distributed, low-feedback, timer scheme is used in several wireless systems to select the best node from the available nodes. In it, each node sets a timer as a function of a local preference number called a metric, and transmits a packet when its timer expires. The scheme ensures that the timer of the best node, which has the highest metric, expires first. However, it fails to select the best node if another node transmits a packet within Delta s of the transmission by the best node. We derive the optimal metric-to-timer mappings for the practical scenario where the number of nodes is unknown. We consider two cases in which the probability distribution of the number of nodes is either known a priori or is unknown. In the first case, the optimal mapping maximizes the success probability averaged over the probability distribution. In the second case, a robust mapping maximizes the worst case average success probability over all possible probability distributions on the number of nodes. Results reveal that the proposed mappings deliver significant gains compared to the mappings considered in the literature.
Resumo:
Space shift keying (SSK) is an attractive modulation technique for multi-antenna communications. In SSK, only one among the available transmit antennas is activated during one channel use, and the index of the chosen transmit antenna conveys information. In this paper, we analyze the performance of SSK in multi-hop, multi-branch cooperative relaying systems. We consider the decode-and-forward relaying protocol, where a relay forwards the decoded symbol if it decodes the symbol correctly from the received signal. We derive closed-form expressions for the end-to-end bit error rate of SSK in this system. Analytical and simulation results match very well.