70 resultados para authentication test
Resumo:
The basic requirements for secure communication in a vehicular ad hoc network (VANET) are anonymous authentication with source non-repudiation and integrity. The existing security protocols in VANETs do not differentiate between the anonymity requirements of different vehicles and the level of anonymity provided by these protocols is the same for all the vehicles in a network. To provide high level of anonymity, the resource requirements of security protocol would also be high. Hence, in a resource constrained VANET, it is necessary to differentiate between the anonymity requirements of different vehicles and to provide the level of anonymity to a vehicle as per its requirement. In this paper, we have proposed a novel protocol for authentication which can provide multiple levels of anonymity in VANETs. The protocol makes use of identity based signature mechanism and pseudonyms to implement anonymous authentication with source non-repudiation and integrity. By controlling the number of pseudonyms issued to a vehicle and the lifetime of each pseudonym for a vehicle, the protocol is able to control the level of anonymity provided to a vehicle. In addition, the protocol includes a novel pseudonym issuance policy using which the protocol can ensure the uniqueness of a newly generated pseudonym by checking only a very small subset of the set of pseudonyms previously issued to all the vehicles. The protocol cryptographically binds an expiry date to each pseudonym, and in this way, enforces an implicit revocation for the pseudonyms. Analytical and simulation results confirm the effectiveness of the proposed protocol.
Resumo:
A scheme for built-in self-test of analog signals with minimal area overhead for measuring on-chip voltages in an all-digital manner is presented. The method is well suited for a distributed architecture, where the routing of analog signals over long paths is minimized. A clock is routed serially to the sampling heads placed at the nodes of analog test voltages. This sampling head present at each test node, which consists of a pair of delay cells and a pair of flip-flops, locally converts the test voltage to a skew between a pair of subsampled signals, thus giving rise to as many subsampled signal pairs as the number of nodes. To measure a certain analog voltage, the corresponding subsampled signal pair is fed to a delay measurement unit to measure the skew between this pair. The concept is validated by designing a test chip in a UMC 130-nm CMOS process. Sub-millivolt accuracy for static signals is demonstrated for a measurement time of a few seconds, and an effective number of bits of 5.29 is demonstrated for low-bandwidth signals in the absence of sample-and-hold circuitry.
Resumo:
In this paper, the governing equations for free vibration of a non-homogeneous rotating Timoshenko beam, having uniform cross-section, is studied using an inverse problem approach, for both cantilever and pinned-free boundary conditions. The bending displacement and the rotation due to bending are assumed to be simple polynomials which satisfy all four boundary conditions. It is found that for certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, the assumed polynomials serve as simple closed form solutions to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of analytical polynomial functions possible for material mass density, shear modulus and elastic modulus distributions, which share the same frequency and mode shape for a particular mode. The derived results are intended to serve as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of rotating non-homogeneous Timoshenko beams.
Resumo:
Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes (M (w) > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity (V (s)) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets (V (s) profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity (V (s)30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V (s)30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V (s) and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as `V (s)' is a function of SPT-N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V (s) profiles of the study area for site response studies.
Resumo:
Designing and implementing thread-safe multithreaded libraries can be a daunting task as developers of these libraries need to ensure that their implementations are free from concurrency bugs, including deadlocks. The usual practice involves employing software testing and/or dynamic analysis to detect. deadlocks. Their effectiveness is dependent on well-designed multithreaded test cases. Unsurprisingly, developing multithreaded tests is significantly harder than developing sequential tests for obvious reasons. In this paper, we address the problem of automatically synthesizing multithreaded tests that can induce deadlocks. The key insight to our approach is that a subset of the properties observed when a deadlock manifests in a concurrent execution can also be observed in a single threaded execution. We design a novel, automatic, scalable and directed approach that identifies these properties and synthesizes a deadlock revealing multithreaded test. The input to our approach is the library implementation under consideration and the output is a set of deadlock revealing multithreaded tests. We have implemented our approach as part of a tool, named OMEN1. OMEN is able to synthesize multithreaded tests on many multithreaded Java libraries. Applying a dynamic deadlock detector on the execution of the synthesized tests results in the detection of a number of deadlocks, including 35 real deadlocks in classes documented as thread-safe. Moreover, our experimental results show that dynamic analysis on multithreaded tests that are either synthesized randomly or developed by third-party programmers are ineffective in detecting the deadlocks.
Resumo:
This article presents frequentist inference of accelerated life test data of series systems with independent log-normal component lifetimes. The means of the component log-lifetimes are assumed to depend on the stress variables through a linear stress translation function that can accommodate the standard stress translation functions in the literature. An expectation-maximization algorithm is developed to obtain the maximum likelihood estimates of model parameters. The maximum likelihood estimates are then further refined by bootstrap, which is also used to infer about the component and system reliability metrics at usage stresses. The developed methodology is illustrated by analyzing a real as well as a simulated dataset. A simulation study is also carried out to judge the effectiveness of the bootstrap. It is found that in this model, application of bootstrap results in significant improvement over the simple maximum likelihood estimates.
Resumo:
An abundance of spectrum access and sensing algorithms are available in the dynamic spectrum access (DSA) and cognitive radio (CR) literature. Often, however, the functionality and performance of such algorithms are validated against theoretical calculations using only simulations. Both the theoretical calculations and simulations come with their attendant sets of assumptions. For instance, designers of dynamic spectrum access algorithms often take spectrum sensing and rendezvous mechanisms between transmitter-receiver pairs for granted. Test bed designers, on the other hand, either customize so much of their design that it becomes difficult to replicate using commercial off the shelf (COTS) components or restrict themselves to simulation, emulation /hardware-in-Ioop (HIL), or pure hardware but not all three. Implementation studies on test beds sophisticated enough to combine the three aforementioned aspects, but at the same time can also be put together using COTS hardware and software packages are rare. In this paper we describe i) the implementation of a hybrid test bed using a previously proposed hardware agnostic system architecture ii) the implementation of DSA on this test bed, and iii) the realistic hardware and software-constrained performance of DSA. Snapshot energy detector (ED) and Cumulative Summation (CUSUM), a sequential change detection algorithm, are available for spectrum sensing and a two-way handshake mechanism in a dedicated control channel facilitates transmitter-receiver rendezvous.
Resumo:
Semiconductor device junction temperatures are maintained within datasheet specified limits to avoid failure in power converters. Burn-in tests are used to ensure this. In inverters, thermal time constants can be large and burn-in tests are required to be performed over long durations of time. At higher power levels, besides increased production cost, the testing requires sources and loads that can handle high power. In this study, a novel method to test a high power three-phase grid-connected inverter is proposed. The method eliminates the need for high power sources and loads. Only energy corresponding to the losses is consumed. The test is done by circulating rated current within the three legs of the inverter. All the phase legs being loaded, the method can be used to test the inverter in both cases of a common or independent cooling arrangement for the inverter phase legs. Further, the method can be used with different inverter configurations - three- or four-wire and for different pulse width modulation (PWM) techniques. The method has been experimentally validated on a 24 kVA inverter for a four-wire configuration that uses sine-triangle PWM and a three-wire configuration that uses conventional space vector PWM.
Resumo:
A supercritical CO2 test facility is currently being developed at Indian Institute of Science, Bangalore, India to analyze the performance of a closed loop Brayton cycle for concentrated solar power (CSP) generation. The loop has been designed for an external heat input of 20 kW a pressure range of 75-135 bar, flow rate of 11 kg/min, and a maximum cycle temperature of 525 degrees C. The operation of the loop and the various parametric tests planned to be performed are discussed in this paper The paper addresses various aspects of the loop design with emphasis on design of various components such as regenerator and expansion device. The regenerator design is critical due to sharp property variations in CO2 occurring during the heat exchange process between the hot and cold streams. Two types of heat exchanger configurations 1) tube-in-tube (TITHE) and 2) printed circuit heat exchanger (PCHE) are analyzed and compared. A PCHE is found to be similar to 5 times compact compared to a TITHE for identical heat transfer and pressure drops. The expansion device is being custom designed to achieve the desired pressure drop for a range of operating temperatures. It is found that capillary of 5.5 mm inner diameter and similar to 2 meter length is sufficient to achieve a pressure drop from 130 to 75 bar at a maximum cycle temperature of 525 degrees C.
Resumo:
Anonymity and authenticity are both important yet often conflicting security goals in a wide range of applications. On the one hand for many applications (say for access control) it is crucial to be able to verify the identity of a given legitimate party (a.k.a. entity authentication). Alternatively an application might require that no one but a party can communicate on its behalf (a.k.a. message authentication). Yet, on the other hand privacy concerns also dictate that anonymity of a legitimate party should be preserved; that is no information concerning the identity of parties should be leaked to an outside entity eavesdropping on the communication. This conflict becomes even more acute when considering anonymity with respect to an active entity that may attempt to impersonate other parties in the system. In this work we resolve this conflict in two steps. First we formalize what it means for a system to provide both authenticity and anonymity even in the presence of an active man-in-the-middle adversary for various specific applications such as message and entity authentication using the constructive cryptography framework of Mau11, MR11]. Our approach inherits the composability statement of constructive cryptography and can therefore be directly used in any higher-level context. Next we demonstrate several simple protocols for realizing these systems, at times relying on a new type of (probabilistic) Message Authentication Code (MAC) called key indistinguishable (KI) MACs. Similar to the key hiding encryption schemes of BBDP01] they guarantee that tags leak no discernible information about the keys used to generate them.