64 resultados para agglomerative clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homogeneous temperature regions are necessary for use in hydrometeorological studies. The regions are often delineated by analysing statistics derived from time series of maximum, minimum or mean temperature, rather than attributes influencing temperature. This practice cannot yield meaningful regions in data-sparse areas. Further, independent validation of the delineated regions for homogeneity in temperature is not possible, as temperature records form the basis to arrive at the regions. To address these issues, a two-stage clustering approach is proposed in this study to delineate homogeneous temperature regions. First stage of the approach involves (1) determining correlation structure between observed temperature over the study area and possible predictors (large-scale atmospheric variables) influencing the temperature and (2) using the correlation structure as the basis to delineate sites in the study area into clusters. Second stage of the approach involves analysis on each of the clusters to (1) identify potential predictors (large-scale atmospheric variables) influencing temperature at sites in the cluster and (2) partition the cluster into homogeneous fuzzy temperature regions using the identified potential predictors. Application of the proposed approach to India yielded 28 homogeneous regions that were demonstrated to be effective when compared to an alternate set of 6 regions that were previously delineated over the study area. Intersite cross-correlations of monthly maximum and minimum temperatures in the existing regions were found to be weak and negative for several months, which is undesirable. This problem was not found in the case of regions delineated using the proposed approach. Utility of the proposed regions in arriving at estimates of potential evapotranspiration for ungauged locations in the study area is demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Al-Li-SiCp composites were fabricated by a simple and cost effective stir casting technique. A compound billet technique has been developed to overcome the problems encountered during hot extrusion of these composites. After successful fabrication hardness measurement and room temperature compressive test were carried out on 8090 Al and its composites reinforced with 8, 12 and 18vol.% SiC particles in as extruded and peak aged conditions. The addition of SiC increases the hardness. 0.2% proof stress and compressive strength of Al-Li-8%SiC and Al-Li-12%SiC composites are higher than the unreinforced alloy. in case of the Al-Li-18%SiC composite, the 0.2% proof stress and compressive strength were higher than the unreinforced alloy but lower than those of Al-Li-8%SiC and Al-Li-12%SiC composites. This is attributed to clustering of particles and poor interfacial bonding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An adaptive learning scheme, based on a fuzzy approximation to the gradient descent method for training a pattern classifier using unlabeled samples, is described. The objective function defined for the fuzzy ISODATA clustering procedure is used as the loss function for computing the gradient. Learning is based on simultaneous fuzzy decisionmaking and estimation. It uses conditional fuzzy measures on unlabeled samples. An exponential membership function is assumed for each class, and the parameters constituting these membership functions are estimated, using the gradient, in a recursive fashion. The induced possibility of occurrence of each class is useful for estimation and is computed using 1) the membership of the new sample in that class and 2) the previously computed average possibility of occurrence of the same class. An inductive entropy measure is defined in terms of induced possibility distribution to measure the extent of learning. The method is illustrated with relevant examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid solidification of Ti-7.3wt.%Cu (near-eutectoid composition), Ti-36.2wt.%Ni and Ti-34.3wt.% Ni-5.8wt.%Si alloys has been carried out by electron beam melting and splat quenching on a water-cooled rotating copper disc. The product obtained was in the form of thin ribbons 60–100 μm thick. Transmission electron microscopy studies of Ti---Cu alloy splats showed that the microstructure consisted of a mixture of martensite and a lamellar eutectoid product. The formation of the intermetallic compound Ti2Cu involved a diffusionless ω transformation and spinodal clustering. In the case of Ti---Ni alloy the as-quenched microstructure is complex, consisting of α, transformed β and intermetallic phases. This could have arisen possibly as a result of local variation in cooling rates. Rapid solidification of Ti---Ni---Si alloy resulted in partial quenching of an amorphous phase. The amorphous phase was seen to be extremely hard (a Vickers hardness of about 800 HV).