123 resultados para X ray powder diffraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for the system Eu - Pd - O at 1223 K has been established by equilibration of samples representing 20 different compositions, and phase identification after quenching by optical and scanning electron microscopy, X-ray powder diffraction, and energy dispersive spectroscopy. Three ternary oxides, Eu4PdO7, Eu2PdO4, and Eu2Pd2O5, were identified. Liquid alloys and the intermetallic compounds EuPd2 and EuPd3 were found to be in equilibrium with EuO. The compound EuPd3 was also found to coexist separately with Eu3O4 and Eu2O3. The oxide phase in equilibrium with EuPd5 and Pd rich solid solution was Eu2O3. Based on the phase relations, four solid state cells were designed to measure the Gibbs energies of formation of the three ternary oxides in the temperature range from 925 to 1350 K. Although three cells are sufficient to obtain the properties of the three compounds, the fourth cell was deployed to crosscheck the data. An advanced version of the solid state cell incorporating a buffer electrode with yttria stabilised zirconia solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode was used for high temperature thermodynamic measurements. Equations for the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides Eu2O3 with C type structure and PdO have been established. Based on the thermodynamic information, isothermal chemical potential diagrams and isobaric phase diagrams for the system Eu - Pd - O have been developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass nanocomposites in the system (100 - x)Li2B4O7-xSrBi(2)Ta(2)O(9) (0 less than or equal to x less than or equal to 22.5, in molar ratio) were fabricated via a melt quenching technique followed by controlled heat-treatment. The as-quenched samples were confirmed to be glassy and amorphous by differential thermal analysis (DTA) and X-ray powder diffraction (XRD) techniques, respectively. The phase formation and crystallite size of the heat-treated samples (glass nanocomposites) were monitored by XRD and transmission electron microscopy (TEM). The relative permittivities (epsilon(tau)') of the glass nanocomposites for different compositions were found to lie in between that of the parent host glass (Li2B4O7) and strontium bismuth tantalate (SBT) ceramic in the frequency range 100 Hz-40 MHz at 300 K, whereas the dielectric loss (D) of the glass nanocomposite was less than that of both the parent phases. Among the various dielectric models employed to predict the effective relative permittivity of the glass nanocomposite, the one obtained using the Maxwell's model was in good agreement with the experimentally observed value. Impedance analysis was employed to rationalize the electrical behavior of the glasses and glass nanocomposites. The pyroelectric response of the glasses and glass nanocomposites was monitored as a function of temperature and the pyroelectric coefficient for glass and glass nanocomposite (x = 20) at 300 K were 27 muC m(-2) K-1 and 53 muC m(-2) K-1, respectively. The ferroelectric behavior of these glass nanocomposites was established by P vs. E hysteresis loop studies. The remnant polarization (P-r) of the glass nanocomposite increases with increase in SBT content. The coercive field (E-c) and P-r for the glass nanocomposite (x = 20) were 727 V cm(-1) and 0.527 muC cm(-2), respectively. The optical transmission properties of these glass nanocomposites were found to be composition dependent. The refractive index (n = 1.722), optical polarizability (am = 1.266 6 10 23 cm 3) and third-order nonlinear optical susceptibility (x(3) = 3.046 6 10(-21) cm(3)) of the glass nanocomposite (x = 15) were larger than those of the as-quenched glass. Second harmonic generation (SHG) was observed in transparent glass nanocomposites and the d(eff) for the glass nanocomposite (x = 20) was found to be 0.373 pm V-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partially grain-oriented (48%) ceramics of strontium bismuth tantalate (SrBi2Ta2O9) have been fabricated via conventional sintering. The grain-orientation factor of the ceramics was determined, as a function of both the sintering temperature and duration of sintering using X-ray powder diffraction (XRD) techniques. Variations in microstructural features (from acircular to plate like morphology) as a function of sintering temperature of the pellets were monitored by Scanning Electron Microscopy (SEM). The dielectric constant and loss measurements as functions of both frequency and temperature have been carried out along the directions parallel and perpendicular to the pressing axis. The anisotropy (epsilon(rn)/epsilon(rp)) associated was found to be 2.21. The effective dielectric constant of the samples with varying porosity was predicted using different dielectric mixture formulae. The grain boundary and grain interior contributions to the dielectric properties were rationalized using the impedance spectroscopy. The pyroelectric coefficient for strontium bismuth tantalate ceramic was determined along the parallel and perpendicular directions to the pressing axis and found to be -23 muC/m(2)K and -71 muC/m(2)K, respectively at 300 K. The ferroelectric properties of these partially grain-oriented ceramics are superior in the direction perpendicular to the pressing axis to that in the parallel direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathodic reduction of oxygen in fuel cells is known to be enhanced on platinum alloys in relation to the platinum metal. The higher performance of the platinum alloys is as a result of the improved oxygen-reduction kinetics on the alloys but there is hardly any increase in the electrode platinum-surface-areas for the platinum alloys as compared to the platinum metal, and thus the higher performance is solely due to the enhanced electrocatalytic activity of the alloys as compared to the platinum metal. The present X-ray photoelectron spectroscopic (XPS) study on carbon-supported Pt, Pt–Co and Pt–Co–Cr electrocatalysts suggests the presence of a relatively lower Pt-oxide content on the alloys. The X-ray powder diffraction patterns for these electrocatalysts show that while the carbon-supported platinum electrocatalyst has a face-centered cubic (fcc) phase, carbon-supported Pt–Co and Pt–Co–Cr electrocatalysts exhibit a face-centered tetragonal (fct) phase. But, Pt electrocatalyst has a lower particle-size and, hence, a higher dispersion. Previous studies have shown higher activities on the Pt-alloys than on Pt, and have attributed it to changes in the electronic and structural characteristics of Pt. These changes can be correlated with the lower oxidation-state of Pt sites, as found in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal sections of the phase diagrams for the systems Ln-Pd-O (with Ln = Tb or Er) have been established by equilibration of samples at T = 1223 K, and phase identification after quenching by optical and scanning electron microscopy (OM, SEM), energy dispersive spectroscopy (EDS), and X-ray powder diffraction (XRPD). Two oxide phases were stable along the binary Tb-O: Tb2O3+x, a phase of variable composition, and Tb7O12 at T = 1223K. The oxide PdO was not stable at this temperature. Only one ternary oxide Tb2Pd2O5 was identified in the Tb-Pd-O system. No ternary compound was found in the system Er-Pd-O at T = 1223K. However, the compound Er2Pd2O5 could be synthesized at T = 1075 K by the hydrothermal route. In both systems, the alloys and inter-metallic compounds were all found to be in equilibrium with the lanthanide sesquioxide Ln(2)O(3) (where Ln is either Tb or Er). Two solid-state cells, each incorporating a buffer electrode, were designed to measure the Gibbs energy of formation of the ternary oxides, using yttria-stabilized zirconia as the solid electrolyte and pure oxygen gas as the reference electrode. Electromotive force measurements were conducted in the temperature range (900-1275) K for Th-Pd-O system, and at temperatures from (900-1075) K for the system Er-Pd-O. The standard Gibbs energy of formation Delta(f)G(m)degrees,, of the inter-oxide compounds from their component binary oxides Ln(2)O(3) and PdO are represented by equations linear in temperature. Isothermal chemical potential diagrams for the systems Ln-Pd-O (with Ln = Tb or Er) are developed based on the thermodynamic information. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparent glasses in the system (1−x)Li2B4O7–xBi2WO6 (0≤x≤0.35) were prepared via melt quenching technique. Differential thermal analysis was employed to characterize the as-quenched glasses. Glass-ceramics with high optical transparency were obtained by controlled heat-treatment of the glasses at 720 K for 6 h. The amorphous nature of the as-quenched glass and crystallinity of glass-ceramics were confirmed by X-ray powder diffraction studies. High resolution transmission electron microscopy (HRTEM) shows the presence of nearly spherical nanocrystallites of Bi2WO6 in Li2B4O7 glass matrix. Capacitance and dielectric loss measurements were carried out as a function of temperature (300–870 K) in the frequency range 100 Hz–40 MHz. Impedance spectroscopy employed to rationalize the electrical behavior of glasses and glass-ceramics suggest the coexistence of electronic and ionic conduction in these materials. The thermal activation energies for the electronic conduction and ionic conduction were also estimated based on the Arrhenius plots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparent glass nanocomposites in the pseudo binary system (100 - x) SrB4O7 (SBO)-x Bi2VO5.5 (BiV) (0 less than or equal to n less than or equal to 70) were prepared by the splat quenching technique. The nano-crystallization of bismuth vanadate (BiV) in 50 SBO-50 BiV (in mol%) glass composite has been demonstrated. These were characterized for their structural, thermal and dielectric properties. As-quenched composites under study have been confirmed to be amorphous by X-ray powder diffraction (XRD) studies. The glass transition temperature (T-g) and crystallization temperatures (T-er) were determined using differential thermal analyses (DTA), High resolution transmission electron microscopic (HRTEM) studies carried out on heat-treated samples reveal the presence of spherical nanosize crystallites of Bi2VO5.5 (BiV) dispersed in the glassy matrix of SrB4O7 (SSO). The dielectric constant (epsilon (r)) and the dielectric loss (D) measurements were carried out on the as-quenched and heat-treated glass nanocomposite samples in the frequency range 100 Hz-10 MHz. The as-quenched and the heat-treated at two different temperatures (720 and 820 K) samples exhibited broad dielectric anomalies in the vicinity of the ferroelectric-to-paraelectric transition temperature of the parent BiV ceramics. The Curie-Weiss law was found to be valid at a temperature above the transition temperature, establishing the diffused nature of the transition. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The single perovskite slab alkylammonium lead iodides (CnH2n+1NH3)(2)PbI4, n = 12, 16, 18, display two phase transitions, just above room temperature, associated with changes in the alkylammonium chains. We have followed these two phase transitions using scanning calorimetry, X-ray powder diffraction, and IR and Raman spectroscopies. We find the first phase transition to be associated with symmetry changes arising from a dynamic rotational disordering of the ammonium headgroup of the chain whereas the second transition, the melting of the chains in two dimensions, is characterized by an increased conformational disorder of the methylene units of the alkyl chains. We examine these phase transitions in light of the interesting optical properties of these materials, as well as the relevance of these systems as models for phase transitions in lipid bilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electroluminescent zinc sulfide doped with copper and chloride (ZnS:Cu, Cl) powder was heated to 400°C and rapidly quenched to room temperature. Comparison between the quenched and non-quenched phosphors using synchrotron radiation X-ray powder diffraction (XRPD) (λ = 0.828692 Å) and X-ray absorption spectroscopy (XAS) was made. XRPD shows that the expected highly faulted structure is observed with excellent resolution out to 150° 2θ (or to (12 2 2) of the sphalerite phase). The quenched sample compared to the unheated sample shows a large change in peak ratios between 46.7° and 46.9°, which is thought to correspond to the wurtzite (0 0 6), (0 3 2) and sphalerite (3 3 3)/(5 1 1) peaks. Hence, a large proportion of this sphalerite diffraction is lost from the material upon rapid quenching, but not when the material is allowed to cool slowly. The Zn K-edge XAS data indicate that the crystalline structures are indistinguishable using this technique, but do give an indication that the electronic structure has altered due to changing intensity of the white line. It is noted that the blue electroluminescence (EL) emission bands are lost upon quenching: however, a large amount of total EL emission intensity is also removed, which is consistent with our findings. We report the XRPD of a working alternating-current electroluminescence device in the synchrotron X-ray beam, which exhibits a new diffraction pattern when the device is powered in an AC field even though the phosphor is fixed in the binder. Significantly, only a few crystals are required to yield the diffraction data because of the high flux X-ray source. These in panel data show multiple sharp diffraction lines spread out under the region, where capillary data show broad diffraction intensity indicating that the phosphor powder is comprised of unique crystals, each having different structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific heat, resistivity, magnetic susceptibility, linear thermal expansion (LTE), and high-resolution synchrotron x-ray powder diffraction investigations of single crystals Fe(1+y) Te (0.06 <= y <= 0.15) reveal a splitting of a single, first-order transition for y <= 0.11 into two transitions for y >= 0.13. Most strikingly, all measurements on identical samples Fe(1.13)Te consistently indicate that, upon cooling, the magnetic transition at T(N) precedes the first-order structural transition at a lower temperature T(s). The structural transition in turn coincides with a change in the character of the magnetic structure. The LTE measurements along the crystallographic c axis display a small distortion close to T(N) due to a lattice striction as a consequence of magnetic ordering, and a much larger change at T(s). The lattice symmetry changes, however, only below T(s) as indicated by powder x-ray diffraction. This behavior is in stark contrast to the sequence in which the phase transitions occur in Fe pnictides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structure and phase transition of LaO1−xF1+2x, prepared by solid-state reaction of La2O3 and LaF3, was investigated by X-ray powder diffraction and differential scanning calorimetry for both positive and negative values of the nonstoichiometric parameter x. The electrical conductivity was investigated as a function of temperature and oxygen partial pressure using AC impedance spectroscopy. Fluoride ion was identified as the migrating species in LaOF by coulometric titration and transport number determined by Tubandt technique and EMF measurements. Activation energy for conduction in LaOF was 58.5 (±0.8) kJ/mol. Conductivity increased with increasing fluorine concentration in the oxyfluoride phase, suggesting that interstitial fluoride ions are more mobile than vacancies. Although the values of ionic conductivity of cubic LaOF are lower, the oxygen partial pressure range for predominantly ionic conduction is larger than that for the commonly used stabilized-zirconia electrolytes. Thermodynamic analysis shows that the oxyfluoride is stable in atmospheres containing diatomic oxygen. However, the oxyfluoride phase can degrade with time at high temperatures in atmospheres containing water vapor, because of the higher stability of HF compared with H2O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray powder diffraction along with differential thermal analysis carried out on the as-quenched samples in the 3BaO–3TiO2–B2O3 system confirmed their amorphous and glassy nature, respectively. The dielectric constants in the 1 kHz–1 MHz frequency range were measured as a function of temperature (323–748 K). The dielectric constant and loss were found to be frequency independent in the 323–473 K temperature range. The temperature coefficient of dielectric constant was estimated using Havinga’s formula and found to be 16 ppm K−1. The electrical relaxation was rationalized using the electric modulus formalism. The dielectric constant and loss were 17±0.5 and 0.005±0.001, respectively at 323 K in the 1 kHz–1 MHz frequency range which may be of considerable interest to capacitor industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glasses of the composition 0.20 Bi2O3 - 0.30 TiO2 - 0.50 SrB4O7 and 0.30 Bi2O3 - 0.45 TiO2 - 0.25 SrB4O7 have been fabricated by conventional glass processing technique. These glasses have been characterized using X-ray powder diffraction (XRD), differential thermal analysis (DTA) and high resolution transmission electron microscopy (HRTEM). The frequency response of the dielectric constant and the loss tangent of these glasses has been studied. The formation of the crystalline bismuth titanate, Bi4Ti3O12 (BiT) phase in the heat treated samples has been confirmed by XRD and HRTEM studies. The measured ET Of the glass-ceramics are found to be in good agreement with those predicted by the logarithmic mixture rule. Optical second harmonic generation (SHG) at 1064 nm has been observed in the heat treated samples and is attributed to the formation of crystalline Bi4Ti3O12 (BiT) phase in the SrB4O7 (SBO) matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetoelectric multiferroic BiFeO3 (BFO) was synthesized by a simple carbonate precipitation technique of metal nitrate solutions. X-ray powder diffraction and thermo-gravimetric analysis (TGA) revealed that the precipitate consists of an intimate mixture of crystalline bismuth carbonate and an amorphous hydroxide of iron. The precipitate yielded BiFeO3 at an optimal calcination temperature of similar to 560A degrees C. Energy dispersive X-ray (EDX) analysis showed 1:1 ratio between Bi and Fe in the oxide. X-ray photoelectron spectroscopy (XPS) studies confirmed that Fe to be in +3 oxidation states both in the precipitated powder and BiFeO3. The synthesized BFO exhibits a very weak ferromagnetic correlation at room temperature and the degree of which increases slightly on cooling down to 10 K suggesting alteration in the long range spatial modulation of the spins arrangement as compared to the bulk BiFeO3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparent glasses in the BaO-Na2O-B2O3 (BNBO) system were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were confirmed by x-ray powder diffraction (XRD) and differential thermal analysis (DTA), respectively. Cyclic heat treatment of the as-quenched glasses yielded transparent glass-microcrystal composites. The volume fraction of the crystallites and their sizes could be easily controlled by this process. Heat-treated samples were highly transparent owing to the minimum mismatch between the refractive indices of the crystallites and the glass residual matrix. BNBO samples that were heat treated at 540A degrees C for 4 h for 10 cycles were found to be 60% to 70% transparent in the 500 nm to 900 nm wavelength range.