345 resultados para Wormlike Micellar Fluids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of the precipitation process in reverse micelles has been developed to calculate the size of fine particles obtained therein. While the method shares several features of particle nucleation and growth common to precipitation in large systems, complexities arise in describing the processes of nucleation, due to the extremely small size of a micelle and of particle growth caused by fusion among the micelles. Occupancy of micelles by solubilized molecules is governed by Poisson statistics, implying most of them are empty and cannot nucleate of its own. The model therefore specifies the minimum number of solubilized molecules required to form a nucleus which is used to calculate the homogeneous nucleation rate. Simultaneously, interaction between micelles is assumed to occur by Brownian collision and instantaneous fusion. Analysis of time scales of various events shows growth of particles to be very fast compared to other phenomena occurring. This implies that nonempty micelles either are supersaturated or contain a single precipitated particle and allows application of deterministic population balance equations to describe the evolution of the system with time. The model successfully predicts the experimental measurements of Kandori ct al.(3) on the size of precipitated CaCO3 particles, obtained by carbonation of reverse micelles containing aqueous Ca(OH)(2) solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonsimilar boundary layer analysis is presented for the problem of mixed convection in power-law type non-Newtonian fluids along horizontal surfaces with variable heat flux distribution. The mixed convection regime is divided into two regions, namely, the forced convection dominated regime and the free convection dominated regime. The two solutions are matched. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonsimilar boundary layer analysis is presented for the problem of free convection in power-law type non-Newtonian fluids along a permeable vertical plate with variable wall temperature or heat flux distribution. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical method is developed for solving an inverse problem for Helmholtz's equation associated with two semi-infinite incompressible fluids of different variable refractive indices, separated by a plane interface. The unknowns of the inverse problem are: (i) the refractive indices of the two fluids, (ii) the ratio of the densities of the two fluids, and (iii) the strength of an acoustic source assumed to be situated at the interface of the two fluids. These are determined from the pressure on the interface produced by the acoustic source. The effect of the surface tension force at the interface is taken into account in this paper. The application of the proposed analytical method to solve the inverse problem is also illustrated with several examples. In particular, exact solutions of two direct problems are first derived using standard classical methods which are then used in our proposed inverse method to recover the unknowns of the corresponding inverse problems. The results are found to be in excellent agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current analytical work on the effect of convection on the late stages of spinodal decomposition in liquids is briefly described. The morphology formed during the spinodal decomposition process depends on the relative composition of the two species. Droplet spinodal decomposition occurs when the concentration of one of the species is small. Convective transport has a significant effect on the scaling laws in the late-stage coarsening of droplets in translational or shear flows. In addition, convective transport could result in an attractive interaction between non-Brownian droplets which could lead to coalescence. The effect of convective transport for the growth of random interfaces in a near-symmetric quench was analysed using an area distribution function, which gives the distribution of surface area of the interface in curvature space. It was found that the curvature of the interface decreases proportional to time t in the late stages of spinodal decomposition, and the surface area also decreases proportional to t.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase diagram of a hard-sphere fluid in the presence of a random pinning potential is studied analytically and numerically. In the analytic work, replicas are introduced for averaging over the quenched disorder, and the hypernetted chain approximation is used to calculate density correlations in the replicated liquid. The freezing transition of the liquid into a nearly crystalline state is studied using a density-functional approach, and the liquid to glass transition is studied using a phenomenological replica symmetry breaking approach. In the numerical work, local minima of a discretized version of the Ramakrishnan-Yussouff free-energy functional are located and the phase diagram in the density-disorder plane is obtained from an analysis of the relative stability of these minima. Both approaches lead to similar results for the phase diagram. The first-order liquid to crystalline solid transition is found to change to a continuous liquid to glass transition as the strength of the disorder is increased above a threshold value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of hydrogen bonds among water molecules themselves and with the polar head groups (PHG) at a micellar surface have been investigated by long molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG and a water molecule is found to be much longer than that between any two water molecules, and is likely to be a general feature of hydrophilic surfaces of organized assemblies. Analyses of individual water trajectories suggest that water molecules can remain bound to the micellar surface for more than 100 ps. The activation energy for such a transition from the bound to a free state for the water molecules is estimated to be about 3.5 kcal/mol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of water molecules near an aqueous micellar interface is studied in an atomistic molecular dynamics simulation of cesium pentadecafluorooctanoate (CsPFO) in water. The dipolar orientational time correlation function (tcf) and the translational diffusion of the water molecules are investigated. Results show that both the reorientational and the translational motion of water molecules near the micelle are restricted. In particular, the orientational tcf exhibits a very slow component in the long time which is slower than its bulk value by 2 orders of magnitude. This slow decay seems to be related to the slow decay often observed in experiments. The origin of the slow decay is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualization of fluids has wide applications in science, engineering and entertainment. Various methodologies Of visualizing fluids have evolved which emphasize on capturing different aspects of the fluids accurately. In this survey the existing methods for realistic visualization of fluids are reviewed. The approaches are classified based on the key concept they rely on for fluid modeling. This classification allows for easy selection of the method to be adopted for visualization given an application. It also enables identification of alternative techniques for fluid modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have prepared Ag-nanorods using biscationic gemini surfactant micelles as the media by a seed-mediated wet synthesis method. Towards this end, we first synthesized Ag-nanoseeds of diameter similar to 7 nm stabilized by trisodium citrate (as the capping agent). Then these Ag-nanoseeds were used to synthesize Ag-nanorods of different aspect ratios. With decreasing Ag-nanoseed concentration, the aspect ratios of the Ag-nanorods stabilized by these gemini surfactants increased gradually. Various Ag-nanoseeds and Ag-nanospecies were characterized using UV-Vis spectroscopy (to know the surface plasmon bands), transmission electron microscopy (to find out their particle sizes and distribution), energy-dispersive X-ray spectroscopy and X-ray diffraction. When we used micelles derived from gemini surfactants of shorter spacer-(CH(2))(n)-(n = 2 or 4) to stabilize the Ag-nanorods, the lambda(max) of the longitudinal band shifted more towards the blue region compared to that of the gemini surfactant micelles with a longer spacer-(CH(2))(n)-(n = 5, 12) at a given amount of the Ag-nanoseed solution. So, the growth of Ag-nanorods in the gemini micellar solutions depends on the spacer-chain length of gemini surfactants employed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalized the Enskog theory originally developed for the hard-sphere fluid to fluids with continuous potentials, such as the Lennard–Jones. We derived the expression for the k and ω dependent transport coefficient matrix which enables us to calculate the transport coefficients for arbitrary length and time scales. Our results reduce to the conventional Chapman–Enskog expression in the low density limit and to the conventional k dependent Enskog theory in the hard-sphere limit. As examples, the self-diffusion of a single atom, the vibrational energy relaxation, and the activated barrier crossing dynamics problem are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and energetics of interfacial water molecules in the aqueous micelle of cesium perfluorooctanoate have been investigated, using large-scale atomistic molecular dynamics simulations, with the primary objective of classifying them. The simulations show that the water molecules at the interface fall into two broad classes: bound and free, present in a ratio of 9:1. The bound water molecules can be further categorized on the basis of the number of hydrogen bonds (one or two) that they form with the surfactant headgroups. The hydrogen bonds of the doubly hydrogen-bonded species are found to be, on the average, slightly weaker than those in the singly bonded species. The environment around interfacial water molecules is more ordered than that in the bulk. The surface water molecules have substantially lower potential energy, because of interaction with the micelle. In particular, both forms of bound water have energies that are lower by �2.5-4.0 kcal/ mol. Entropy is found to play an important role in determining the relative concentration of the species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A linear stability analysis is presented to study the self-organized instabilities of a highly compliant elastic cylindrical shell filled with a viscous liquid and submerged in another viscous medium. The prototype closely mimics many components of micro-or nanofluidic devices and biological processes such as the budding of a string of pearls inside cells and sausage-string formation of blood vessels. The cylindrical shell is considered to be a soft linear elastic solid with small storage modulus. When the destabilizing capillary force derived from the cross-sectional curvature overcomes the stabilizing elastic and in-plane capillary forces, the microtube can spontaneously self-organize into one of several possible configurations; namely, pearling, in which the viscous fluid in the core of the elastic shell breaks up into droplets; sausage strings, in which the outer interface of the mircrotube deforms more than the inner interface; and wrinkles, in which both interfaces of the thin-walled mircrotube deform in phase with small amplitudes. This study identifies the conditions for the existence of these modes and demonstrates that the ratios of the interfacial tensions at the interfaces, the viscosities, and the thickness of the microtube play crucial roles in the mode selection and the relative amplitudes of deformations at the two interfaces. The analysis also shows asymptotically that an elastic fiber submerged in a viscous liquid is unstable for Y = gamma/(G(e)R) > 6 and an elastic microchannel filled with a viscous liquid should rupture to form spherical cavities (pearling) for Y > 2, where gamma, G(e), and R are the surface tension, elastic shear modulus, and radius, respectively, of the fiber or microchannel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiphase flow of fluids in the unsaturated porous medium is considered as a three phase flow of water, NAPL, and air simultaneously in the porous medium. The adaptive solution fully implicit modified sequential method is used for the numerical modelling. The effect of capillarity and heterogeneity effect at the interface between the media is studied and it is observed that the interface criteria has to be taken into account for the correct prediction of NAPL migration especially in heterogeneous media. The modified Newton Raphson method is used for the linearization and Hestines and Steifel Conjugate Gradient method is used as the solver.