70 resultados para Wideband Receivers
Resumo:
SARAS is a correlation spectrometer connected to a frequency independent antenna that is purpose-designed for precision measurements of the radio background at long wavelengths. The design, calibration, and observing strategies admit solutions for the internal additive contributions to the radiometer response, and hence a separation of these contaminants from the antenna temperature. We present here a wideband measurement of the radio sky spectrum by SARAS that provides an accurate measurement of the absolute brightness and spectral index between 110 and 175MHz. Accuracy in the measurement of absolute sky brightness is limited by systematic errors of magnitude 1.2%; errors in calibration and in the joint estimation of sky and system model parameters are relatively smaller. We use this wide-angle measurement of the sky brightness using the precision wide-band dipole antenna to provide an improved absolute calibration for the 150 MHz all-sky map of Landecker and Wielebinski: subtracting an offset of 21.4 K and scaling by a factor of 1.05 will reduce the overall offset error to 8 K (from 50 K) and scale error to 0.8% (from 5%). The SARAS measurement of the temperature spectral index is in the range -2.3 to -2.45 in the 110-175MHz band and indicates that the region toward the Galactic bulge has a relatively flatter index.
Resumo:
This paper derives outer bounds for the 2-user symmetric linear deterministic interference channel (SLDIC) with limited-rate transmitter cooperation and perfect secrecy constraints at the receivers. Five outer bounds are derived, under different assumptions of providing side information to receivers and partitioning the encoded message/output depending on the relative strength of the signal and the interference. The usefulness of these outer bounds is shown by comparing the bounds with the inner bound on the achievable secrecy rate derived by the authors in a previous work. Also, the outer bounds help to establish that sharing random bits through the cooperative link can achieve the optimal rate in the very high interference regime.
Resumo:
In this paper, we consider spatial modulation (SM) operating in a frequency-selective single-carrier (SC) communication scenario and propose zero-padding instead of the cyclic-prefix considered in the existing literature. We show that the zero-padded single-carrier (ZP-SC) SM system offers full multipath diversity under maximum-likelihood (ML) detection, unlike the cyclic-prefix based SM system. Furthermore, we show that the order of ML detection complexity in our proposed ZP-SC SM system is independent of the frame length and depends only on the number of multipath links between the transmitter and the receiver. Thus, we show that the zero-padding applied in the SC SM system has two advantages over the cyclic prefix: 1) achieves full multipath diversity, and 2) imposes a relatively low ML detection complexity. Furthermore, we extend the partial interference cancellation receiver (PIC-R) proposed by Guo and Xia for the detection of space-time block codes (STBCs) in order to convert the ZP-SC system into a set of narrowband subsystems experiencing flat-fading. We show that full rank STBC transmissions over these subsystems achieves full transmit, receive as well as multipath diversity for the PIC-R. Furthermore, we show that the ZP-SC SM system achieves receive and multipath diversity for the PIC-R at a detection complexity order which is the same as that of the SM system in flat-fading scenario. Our simulation results demonstrate that the symbol error ratio performance of the proposed linear receiver for the ZP-SC SM system is significantly better than that of the SM in cyclic prefix based orthogonal frequency division multiplexing as well as of the SM in the cyclic-prefixed and zero-padded single carrier systems relying on zero-forcing/minimum mean-squared error equalizer based receivers.
Resumo:
The K-user multiple input multiple output (MIMO) Gaussian symmetric interference channel where each transmitter has M antennas and each receiver has N antennas is studied from a generalized degrees of freedom (GDOF) perspective. An inner bound on the GDOF is derived using a combination of techniques such as treating interference as noise, zero forcing (ZF) at the receivers, interference alignment (IA), and extending the Han-Kobayashi (HK) scheme to K users, as a function of the number of antennas and the log INR/log SNR level. Several interesting conclusions are drawn from the derived bounds. It is shown that when K > N/M + 1, a combination of the HK and IA schemes performs the best among the schemes considered. When N/M < K <= N/M + 1, the HK-scheme outperforms other schemes and is found to be GDOF optimal in many cases. In addition, when the SNR and INR are at the same level, ZF-receiving and the HK-scheme have the same GDOF performance.
Resumo:
This paper derives outer bounds on the sum rate of the K-user MIMO Gaussian interference channel (GIC). Three outer bounds are derived, under different assumptions of cooperation and providing side information to receivers. The novelty in the derivation lies in the careful selection of side information, which results in the cancellation of the negative differential entropy terms containing signal components, leading to a tractable outer bound. The overall outer bound is obtained by taking the minimum of the three outer bounds. The derived bounds are simplified for the MIMO Gaussian symmetric IC to obtain outer bounds on the generalized degrees of freedom (GDOF). The relative performance of the bounds yields insight into the performance limits of multiuser MIMO GICs and the relative merits of different schemes for interference management. These insights are confirmed by establishing the optimality of the bounds in specific cases using an inner bound on the GDOF derived by the authors in a previous work. It is also shown that many of the existing results on the GDOF of the GIC can be obtained as special cases of the bounds, e. g., by setting K = 2 or the number of antennas at each user to 1.
Resumo:
Multicast in wireless sensor networks (WSNs) is an efficient way to spread the same data to multiple sensor nodes. It becomes more effective due to the broadcast nature of wireless link, where a message transmitted from one source is inherently received by all one-hop receivers, and therefore, there is no need to transmit the message one by one. Reliable multicast in WSNs is desirable for critical tasks like code updation and query based data collection. The erroneous nature of wireless medium coupled with limited resource of sensor nodes, makes the design of reliable multicast protocol a challenging task. In this work, we propose a time division multiple access (TDMA) based energy aware media access and control (TEA-MAC) protocol for reliable multicast in WSNs. The TDMA eliminates collisions, overhearing and idle listening, which are the main sources of reliability degradation and energy consumption. Furthermore, the proposed protocol is parametric in the sense that it can be used to trade-off reliability with energy and delay as per the requirement of the underlying applications. The performance of TEA-MAC has been evaluated by simulating it using Castalia network simulator. Simulation results show that TEA-MAC is able to considerably improve the performance of multicast communication in WSNs.
Resumo:
By using six 4.5 Hz geophones, surface wave tests were performed on four different sites by dropping freely a 65 kg mass from a height of 5 m. The receivers were kept far away from the source to eliminate the arrival of body waves. Three different sources to nearest receiver distances (S), namely, 46 m, 56 m and 66 m, were chosen. Dispersion curves were drawn for all the sites. The maximum wavelength (lambda(max)), the maximum depth (d(max)) up to which exploration can be made and the frequency content of the signals depends on the site stiffness and the value of S. A stiffer site yields greater values of lambda(max) and d(max). For stiffer sites, an increase in S leads to an increase in lambda(max). The predominant time durations of the signals increase from stiffer to softer sites. An inverse analysis was also performed based on the stiffness matrix approach in conjunction with the maximum vertical flexibility coefficient of ground surface to establish the governing mode of excitation. For the Site 2, the results from the surface wave tests were found to compare reasonably well with that determined on the basis of cross boreholes seismic tests. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper considers decentralized spectrum sensing, i.e., detection of occupancy of the primary users' spectrum by a set of Cognitive Radio (CR) nodes, under a Bayesian set-up. The nodes use energy detection to make their individual decisions, which are combined at a Fusion Center (FC) using the K-out-of-N fusion rule. The channel from the primary transmitter to the CR nodes is assumed to undergo fading, while that from the nodes to the FC is assumed to be error-free. In this scenario, a novel concept termed as the Error Exponent with a Confidence Level (EECL) is introduced to evaluate and compare the performance of different detection schemes. Expressions for the EECL under general fading conditions are derived. As a special case, it is shown that the conventional error exponent both at individual sensors, and at the FC is zero. Further, closed-form lower bounds on the EECL are derived under Rayleigh fading and lognormal shadowing. As an example application, it answers the question of whether to use pilot-signal based narrowband sensing, where the signal undergoes Rayleigh fading, or to sense over the entire bandwidth of a wideband signal, where the signal undergoes lognormal shadowing. Theoretical results are validated using Monte Carlo simulations. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this paper, the Gaussian many-to-one X channel (XC), which is a special case of general multiuser XC, is studied. In the Gaussian many-to-one XC, communication links exist between all transmitters and one of the receivers, along with a communication link between each transmitter and its corresponding receiver. As per the XC assumption, transmission of messages is allowed on all the links of the channel. This communication model is different from the corresponding manyto- one interference channel (IC). Transmission strategies, which involve using Gaussian codebooks and treating interference from a subset of transmitters as noise, are formulated for the above channel. Sum-rate is used as the criterion of optimality for evaluating the strategies. Initially, a 3 x 3 many-to-one XC is considered and three transmission strategies are analyzed. The first two strategies are shown to achieve sum-rate capacity under certain channel conditions. For the third strategy, a sum-rate outer bound is derived and the gap between the outer bound and the achieved rate is characterized. These results are later extended to the K x K case. Next, a region in which the many-to-one XC can be operated as a many-to-one IC without the loss of sum-rate is identified. Furthermore, in the above region, it is shown that using Gaussian codebooks and treating interference as noise achieve a rate point that is within K/2 -1 bits from the sum-rate capacity. Subsequently, some implications of the above results to the Gaussian many-to-one IC are discussed. Transmission strategies for the many-to-one IC are formulated, and channel conditions under which the strategies achieve sum-rate capacity are obtained. A region where the sum-rate capacity can be characterized to within K/2 -1 bits is also identified. Finally, the regions where the derived channel conditions are satisfied for each strategy are illustrated for a 3 x 3 many-to-one XC and the corresponding many-to-one IC.
Resumo:
This paper establishes the design requirements for the development and testing of direct supercritical carbon dioxide (sCO2) solar receivers. Current design considerations are based on the ASME Boiler and Pressure Vessel Code (BPVC). Section I (BPVC) considers typical boilers/superheaters (i.e. fired pressure vessels) which work under a constant low heat flux. Section VIII (BPVC) considers pressure vessels with operating pressures above 15 psig 2 bar] (i.e. unfired pressure vessels). Section III, Division I - Subsection NH (BPVC) considers a more detailed stress calculation, compared to Section I and Section VIII, and requires a creep-fatigue analysis. The main drawback from using the BPVC exclusively is the large safety requirements developed for nuclear power applications. As a result, a new set of requirements is needed to perform detailed thermal-structural analyses of solar thermal receivers subjected to a spatially-varying, high-intensity heat flux. The last design requirements document of this kind was an interim Sandia report developed in 1979 (SAND79-8183), but it only addresses some of the technical challenges in early-stage steam and molten-salt solar receivers but not the use of sCO2 receivers. This paper presents a combination of the ASME BPVC and ASME B31.1 Code modified appropriately to achieve the reliability requirements in sCO(2) solar power systems. There are five main categories in this requirements document: Operation and Safety, Materials and Manufacturing, Instrumentation, Maintenance and Environmental, and General requirements. This paper also includes the modeling guidelines and input parameters required in computational fluid dynamics and structural analyses utilizing ANSYS Fluent, ANSYS Mechanical, and nCode Design Life. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of sCO(2) receivers.