120 resultados para Vortex Knots


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper- and nickel-coated graphite particles can be successfully introduced into aluminium-base alloy melts as pellets to produce cast aluminium-graphite particle composites. The pellets were made by pressing mixtures of nickel- or copper-coated graphite particles and aluminium powders together at pressures varying between 2 and 20 kg mm–2. These pellets were dispersed in aluminium alloy melts by plunging and holding them in the melts using a refractory coated mild steel cone, until the pellets disintegrated and the powders were dispersed. The optimum pressure for the preparation of pellets was 2 to 5 kg mm–2 and the optimum size and percentage of aluminium powder were 400 to 1000mgrm and 35 wt% respectively. Under optimum conditions the recovery of the graphite particles in the castings was as high as 96%, these particles being pushed into the last freezing interdendritic regions. The tensile strength and the hardness of the graphite aluminium alloys made using the pellet method are comparable to those of similar composites made using gas injection or the vortex method. The pellet method however has the advantage of greater reproducibility and flexibility. Dispersion of graphite particles in the matrix of cast aluminium alloys using the pellet method increases their resistance to wear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid-driven flow in a three-dimensional (3D), rectangular cavity, and compare the results with flow in an equivalent two-dimensional (2D) cavity. Design/methodology/approach - The second-order MRT model is implemented in a 3D LBM code. The flow structure in cavities of different aspect ratios (0.25-4) and Reynolds numbers (0.01-1000) is investigated. The LBM simulation results are compared with those from numerical solution of Navier-Stokes (NS) equations and with available experimental data. Findings - The 3D simulations demonstrate that 2D models may predict the flow structure reasonably well at low Reynolds numbers, but significant differences with experimental data appear at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of boundary layers near the side-walls in transverse direction (in 3D), due to which the vorticity in the core-region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow, the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase in Reynolds number. However, on the symmetry-plane, the flow structure variation with respect to cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary flow vortices whose axis is in the direction of the lid-motion are observed; these are weak at low. Reynolds numbers, but become quite strong at high Reynolds numbers. Originality/value - The findings will be useful in the study of variety of enclosed fluid flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flexible objects such as a rope or snake move in a way such that their axial length remains almost constant. To simulate the motion of such an object, one strategy is to discretize the object into large number of small rigid links connected by joints. However, the resulting discretised system is highly redundant and the joint rotations for a desired Cartesian motion of any point on the object cannot be solved uniquely. In this paper, we revisit an algorithm, based on the classical tractrix curve, to resolve the redundancy in such hyper-redundant systems. For a desired motion of the `head' of a link, the `tail' is moved along a tractrix, and recursively all links of the discretised objects are moved along different tractrix curves. The algorithm is illustrated by simulations of a moving snake, tying of knots with a rope and a solution of the inverse kinematics of a planar hyper-redundant manipulator. The simulations show that the tractrix based algorithm leads to a more `natural' motion since the motion is distributed uniformly along the entire object with the displacements diminishing from the `head' to the `tail'.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Force-free equilibrium configurations of magnetic-pressure-dominated magnetized supersonic jets confined by slowly varying external pressure are investigated analytically. For the case where internal dissipation mechanisms are active, the lowest-energy field configuration is found to be the superposition of an axisymmetric mode and a helical mode with a wavelength equal to 5 times the jet radius, and the pressure below which the nonaxisymmetric mode becomes energetically favorable is given as 2700 times the product of the 4th power of the magnetic helicity per unit length and the -6th power of the magnetic flux. A model of the total and polarized emission of such a configuration is developed and applied to the extended well-collimated astronomically resolved jet NGC 6251. The model is shown to reproduce significant features such as transverse oscillations of the ridge line, width oscillations and emission knots, the projected magnetic-field configuration, oscillations of the degree of polarization, and the distribution of the Faraday rotation measure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were conducted with two, smooth hills, lying well within the boundary layer over a flat plate mounted in a wind tunnel. One hill was shallow, with peak height 1.5 mm and width 50 mm; the other, steep, 3 mm high and 30 mm wide. Since the hills occupied one-half of the tunnel span, streamwise vorticity formed near the hills' edge. At a freestream speed of 3.5 m/s, streaks formed with inflectional wall-normal and spanwise velocity profiles but without effecting transition. Transition, observed at 7.5 m/s, took different routes with the two hills. With the steep hill, streamwise velocity signals exhibited the passage of a wave packet which intensified before breakdown to turbulence. With the shallow hill there was a broad range of frequencies present immediately downstream of the hill. These fluctuations grew continuously and transition occurred within a shorter distance. Since the size of the streamwise vorticity generated at the hill edge is of the order of the hill height, the shallow hill generates vorticity closer to the wall and supports an earlier transition, whereas the steep hill creates a thicker vortex and associated streaks which exhibit oscillations due to their own instability as an additional precursor stage before transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations of different superconducting (S)/ferromagnetic (F) heterostructures grown by pulsed laser deposition reveal that the activation energy (U) for the vortex motion in a high T-c superconductor is reduced remarkably by the presence of F layers. The U exhibits a logarithmic dependence on the applied magnetic field in the S/F bilayers suggesting the existence of decoupled two-dimensional (2D) pancake vortices. This result is discussed in terms of the reduction in the effective S layer thickness and the weakening of the S coherence length due to the presence of F layers. In addition, the U and the superconducting T-c in YBa2Cu3O7-delta/La0.5Sr0.5CoO3 bilayers are observed to be much lower than in the YBa2Cu3O7-delta/La0.7Sr0.3MnO3 ones. This in turn suggests that the degree of spin polarization of the F layer might not play a crucial role for the suppression of superconductivity due to a spin polarized induced pair-breaking effect in S/F bilayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the occurrence of nonclassical rotational inertia (NCRI) arising from superfluidity along grain boundaries in a two-dimensionalbosonic system. We make use of a standard mapping between the zero-temperature properties of this system and the statistical mechanics of interacting vortex lines in the mixed phase of a type-II superconductor. In the mapping, the liquid phase of the vortex system corresponds to the superfluid bosonic phase. We consider numerically obtained polycrystalline configurations of the vortex lines in which the microcrystals are separated by liquidlike grain-boundary regions which widen as the vortex system temperature increases. The NCRI of the corresponding zero-temperature bosonic systems can then be numerically evaluated by solving the equations of superfluid hydrodynamics in the channels near the grain boundaries. We find that the NCRI increases very abruptly as the liquid regions in the vortex system (equivalently, superfluid regions in the bosonic system) form a connected, system-spanning structure with one or more closed loops. The implications of these results for experimentally observed supersolid phenomena are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, direct numerical simulation of autoignition in an initially non-premixed medium under isotropic, homogeneous, and decaying turbulence is presented. The pressure-based method developed herein is a spectral implementation of the sequential steps followed in the predictor-corrector type of algorithms; it includes the effects of density fluctuations caused by spatial inhomogeneities ill temperature and species. The velocity and pressure field are solved in the spectral space while the scalars and density field are solved in the physical space. The presented results reveal that the autoignition spots originate and evolve at locations where (1) the composition corresponds to a small range around a specific mixture fraction, and (2) the conditional scaler dissipation rate is low. A careful examination of the data obtained indicates that the autoignition spots originate in the vortex cores, and the hot gases travel outward as combustion progresses. Hence, the applicability of the transient laminar flamelet model for this problem is questioned. The dependence of autoignition characteristics on parameters such as (1) die initial eddy-turnover time and (2) the initial ratio of length scale of scalars to that of velocities are investigated. Certain implications of new results on the conditional moment closure modeling are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic field induced broadening of the normal to superconducting resistive transition of YBa2Cu3O7−x thin films laser deposited on (100) MgO substrates for field oriented parallel to the c axis is found to be significantly reduced in comparison with that found previously in single crystals and in films deposited on SrTiO3. This reduction in broadening is associated with a high density of defects which, while causing a slight decrease in Tc and an increase in the zero‐field transition width, seems to provide strong vortex pinning centers that reduce flux creep

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An eight-level axisymmetric model with simple parameterizations for clouds and the atmospheric boundary layer was developed to examine the evolution of vortices that are precursors to tropical cyclones. The effect of vertical distributions of vorticity, especially that arising from a merger of mid-level vortices, was studied by us to provide support for a new vortex-merger theory of tropical cyclone genesis. The basic model was validated with the analytical results available for the spin-down of axisymmetric vortices. With the inclusion of the cloud and boundary layer parameterizations, the evolution of deep vortices into hurricanes and the subsequent decay are simulated quite well. The effects of several parameters such as the initial vortex strength, radius of maximum winds, sea-surface temperature and latitude (Coriolis parameter) on the evolution were examined. A new finding is the manner in which mid-level vortices of the same strength decay and how, on simulated merger of these mid-level vortices, the resulting vortex amplifies to hurricane strength in a realistic time frame. The importance of sea-surface temperature on the evolution of full vortices was studied and explained. Also it was found that the strength of the surface vortex determines the time taken by the deep vortex to amplify to hurricane strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

THE flowfield due to transverse injection of a round sonic jet into a supersonic flowis a configuration of interest in the design of supersonic combustors or thrust vector control of supersonic jets. The flow is also of fundamental interest because it presents separation from a smooth surface, embedded subsonic regions, curved shear layers, strong shocks, an unusual development of the injected jet into a kidney-shaped streamwise vortex pair, and a wake behind the jet. Although the geometry is simple, the flow is complex and is a good candidate for assessing the behavior of turbulence models for high-speed flow, beginning with the corresponding two-dimensional flow shown in Fig. 1. At the slot, an underexpanded sonic jet expands rapidly into the supersonic crossflow. Expansion waves reflect at the jet boundary, coalesce, and give rise to a Mach surface (Mach disk for round jets).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The near flow field of small aspect ratio elliptic turbulent free jets (issuing from nozzle and orifice) was experimentally studied using a 2D PIV. Two point velocity correlations in these jets revealed the extent and orientation of the large scale structures in the major and minor planes. The spatial filtering of the instantaneous velocity field using Gaussian convolution kernel shows that while a single large vortex ring circumscribing the jet seems to be present at the exit of nozzle, the orifice jet exhibited a number of smaller vortex ring pairs close to jet exit. The smaller length scale observed in the case of the orifice jet is representative of the smaller azimuthal vortex rings that generate axial vortex field as they are convected. This results in the axis-switching in the case of orifice jet and may have a mechanism different from the self induction process as observed in the case of contoured nozzle jet flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hemispherical colloidal nanowells or microwells with hollow interiors are becoming increasingly important for the encapsulation of functional materials. There has been rapid progress to develop new methods to obtain such structures. In this work, we present emulsification approach to generate hemisphere and microcapsules of biocompatible organic polymer. The precise control over the size is exhibited by applying variable vortex effect. The hemispheres and microcapsules of a copolymer (BPVA-PVA) were characterized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). These structures were used for loading of hydrophilic molecules and submicron colloidal particles to demonstrate their potential application. The introduction of hydrophobic groups on poly(vinyl alcohol) was crucial to obtain these structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple method using a combination of conformal mapping and vortex panel method to simulate potential flow in cascades is presented. The cascade is first transformed to a single body using a conformal mapping, and the potential flow over this body is solved using a simple higher order vortex panel method. The advantage of this method over existing methodologies is that it enables the use of higher order panel methods, as are used to solve flow past an isolated airfoil, to solve the cascade problem without the need for any numerical integrations or iterations. The fluid loading on the blades, such as the normal force and pitching moment, may be easily calculated from the resultant velocity field. The coefficient of pressure on cascade blades calculated with this methodology shows good agreement with previous numerical and experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose and develop here a phenomenological Ginzburg-Landau-like theory of cuprate high-temperature superconductivity. The free energy of a cuprate superconductor is expressed as a functional F of the complex spin-singlet pair amplitude psi(ij) equivalent to psi(m) = Delta(m) exp(i phi(m)), where i and j are nearest-neighbor sites of the square planar Cu lattice in which the superconductivity is believed to primarily reside, and m labels the site located at the center of the bond between i and j. The system is modeled as a weakly coupled stack of such planes. We hypothesize a simple form FDelta, phi] = Sigma(m)A Delta(2)(m) + (B/2)Delta(4)(m)] + C Sigma(< mn >) Delta(m) Delta(n) cos(phi(m) - phi(n)) for the functional, where m and n are nearest-neighbor sites on the bond-center lattice. This form is analogous to the original continuum Ginzburg-Landau free-energy functional; the coefficients A, B, and C are determined from comparison with experiments. A combination of analytic approximations, numerical minimization, and Monte Carlo simulations is used to work out a number of consequences of the proposed functional for specific choices of A, B, and C as functions of hole density x and temperature T. There can be a rapid crossover of from small to large values as A changes sign from positive to negative on lowering T; this crossover temperature T-ms(x) is identified with the observed pseudogap temperature T*(x). The thermodynamic superconducting phase-coherence transition occurs at a lower temperature T-c(x), and describes superconductivity with d-wave symmetry for positive C. The calculated T-c(x) curve has the observed parabolic shape. The results for the superfluid density rho(s)(x, T), the local gap magnitude , the specific heat C-v(x, T) (with and without a magnetic field), as well as vortex properties, all obtained using the proposed functional, are compared successfully with experiments. We also obtain the electron spectral density as influenced by the coupling between the electrons and the correlation function of the pair amplitude calculated from the functional, and compare the results successfully with the electronic spectrum measured through angle resolved photoemission spectroscopy (ARPES). For the specific heat, vortex structure, and electron spectral density, only some of the final results are reported here; the details are presented in subsequent papers.